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ABSTRACT 

 

 In this paper we show how to apply Bayesian methods to 

noisy ratio scale distances for both the classical similarities 

problem as well as the unfolding problem.  Bayesian methods 

produce essentially the same point estimates as the classical 

methods but are superior in that they provide more accurate 

measures of uncertainty in the data. Identification is non-

trivial for this class of problems because a configuration of 

points that reproduces the distances is only identified up to a 

choice of origin, angles of rotation, and sign flips on the 

dimensions.  We prove that fixing the origin and rotation is 

sufficient to identify a configuration in the sense that the 

corresponding maxima/minima are inflection points with full rank 

Hessians.  However, an unavoidable result is multiple posterior 

distributions that are mirror images of one another.  This poses 

a problem for MCMC methods.  The approach we take is to find the 

optimal solution using standard optimizers.  The configuration 

of points from the optimizers is then used to isolate a single 

Bayesian posterior which can then be easily analyzed with 

standard MCMC methods.  
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1. Introduction 

In this paper we take a fresh look at the classical ratio 

scale similarities and unfolding problems from the Psychometrics 

literature using Bayesian methods.  Similarities and unfolding 

are Multidimensional Scaling (MDS) methods.  Multidimensional 

Scaling encompasses a wide-variety of statistical techniques 

aimed at characterizing structure within a set of preference or 

perceptual data.  The most common uses of MDS are to uncover the 

dimensionality of given set of data and to visually display the 

placements of stimuli (i.e. products, candidates, etc.) 

according to their positions on the dimension(s) (this is the 

similarities problem).  Additionally, there is often interest in 

the placement of respondents who have expressed preferences for 

the stimuli and therefore can be located on the dimension(s) 

relative to these stimuli (this is the unfolding problem).  Such 

spatial maps can help us better understand the structure of 

certain types of decision-making metrics employed in a variety 

of settings.  This information can then be used to predict the 

outcome of future choices (for example, what product a certain 

consumer will buy or what candidate a voter will support) as an 

individual will be more likely to choose a stimulus that is 

closer to her position on a given dimension than one that is 

further away.  
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In Political Science MDS has a natural connection to spatial 

(geometric) models of choice and judgment.  In the basic spatial 

model individuals/decision makers are assumed to have single-

peaked utility functions over some latent dimensions of judgment 

and they choose the stimuli closest to them on the dimension(s) 

(Enelow and Hinich, 1984).  For example, the methods developed 

in the past thirty years to estimate ideological positions from 

roll call data are examples of multidimensional unfolding 

applied to explicitly stated spatial models of choice (e.g., 

Poole and Rosenthal, 1997; Londregan, 2000; Clinton, Jackman and 

Rivers, 2004; Martin and Quinn, 2002; Pope and Treier, 2011). 

In contrast to these modern methods that analyze nominal (Yea 

or Nay) data, the first uses of MDS methods in Political Science 

were to ratio scale data. For example, Weisberg and Rusk (1970) 

used non-metric MDS (Shepard, 1962a,b; Kruskal, 1964a,b) to 

analyze a correlation matrix computed over respondents’ 

placements of political stimuli on 100 point “feeling” 

thermometers.  Later Rabinowitz (1976), Cahoon, Hinich, and 

Ordeshook (1978), Jacoby (1982), and Brady (1990) developed 

unfolding methods based on the spatial theory of choice to 

analyze feeling thermometers. 

We revisit these problems and show how to apply Bayesian 

methods to noisy ratio scale distances for both the similarities 

and unfolding problems.  Our approach is explicitly based on the 
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spatial theory of choice and judgment.  Because these problems 

have been studied for 50 years or more, the solutions are known 

and various data sets have been used to calibrate a succession 

of statistical methods.  Both similarities and unfolding can 

easily be handled with frequentist or Bayesian models but pose 

problems for Markov chain Monte Carlo (MCMC) methods because of 

the existence of multiple posterior distributions that are 

mirror images of one another over the hyperplane of the 

parameters.  In the on-line appendix we prove two theorems and 

two corollaries concerning the identification of posterior 

distributions in distance based choice models that allow us to 

isolate a single posterior distribution.   

The analysis of ratio scale similarities data by 

psychometricians in the 1930s through the 1960s led to the 

development of multidimensional scaling methods (MDS).  The 

psychometricians solved the general problem of representing 

relational or distance data in a spatial or geometric map where 

the points represented the stimuli and the distances between the 

points in the geometric map reproduced the observed 

distance/relational data.  The ratio scale similarities problem 

was solved by Torgerson (1952, 1958) which in turn built upon 

work done by pschometricians in the 1930s [Eckart and Young, 

(1936); Young and Householder (1938)].   
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In the unfolding problem there are two sets of points – one 

representing individuals and one representing stimuli.  The 

observed distance/relational data are regarded as expressing the 

preferences of individuals; namely, the closer a stimulus point 

is to an individual point the more the individual prefers that 

stimulus.  The unfolding problem for ratio scale data (the 

“metric unfolding problem”) was first solved by Schönemann 

(1970). 

We first discuss the similarities problem and then we turn to 

the unfolding problem.  Because our Bayesian framework is 

essentially the same for both problems, we spend more time 

detailing our solution for the similarities problem because the 

mathematical exposition is simpler.  However, the unfolding 

problem is of greater interest because most public opinion 

survey data sets include a set of relational data questions in 

some form (“where would you place George Bush”; “On a scale of 

zero to 10, how would you rate John Kerry?”; etc.).   

 

2. Multidimensional Bayesian Similarities/Dissimilarites 

Scaling 

Similarities data differ from choice data in that they 

measure how alike or not-alike objects are to each other. 

Similarities data are frequently generated from choice data (for 



6 
 

example, an agreement score matrix based on how often 

legislators vote together) but does not include the choices 

themselves. 

These data are relational and organized as a square matrix.  

For example, imagine you’ve never seen a map of the United 

States but you know the distances in miles between a set of U.S. 

cities. Within these distances is embedded a map and the purpose 

of multidimensional scaling (MDS) methods is producing a map 

given the distances.  That is, in this instance, placing a set 

of points representing the cities in a plane such that they 

reproduce the distances.  In this case MDS produces a 

geographical map that represents the distances in a meaningful 

way (i.e. the map would be useful for getting from one city to 

another).  Clearly, a two dimensional map of distances between 

cities would be a simplification of the true positions of the 

cities as we exist in a three-dimensional world, but it is good 

enough for driving from one city to the next.  

 Table 1 displays distances in miles between five major U.S. 

cities.  With just these data, we can generate a map using MDS 

techniques.  However, there is an additional complication 

inherent in MDS techniques.  The cities in Table 1 can be 

arranged in any number of different configurations that 

accurately represent the distances between them.  Indeed, there 
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are an infinite number of arrangements of the points that 

reproduce the distances.  As we describe below, this issue 

requires that we impose some constraints in order to produce a 

single, meaningful graphical representation and it also has 

additional implications for the Bayesian approach we present.  

In Figure 1 we plot four solutions from an MDS routine applied 

to the city distance data.   

[TABLE 1 and FIGURE 1 HERE]  

To anyone with cursory knowledge of U.S. geography, 

solution 4 is obviously the true configuration.  Clearly there 

is no need to estimate the positions of the U.S. cities based on 

their distances as we know the exact positions of their 

coordinates (i.e. we know their latitude and longitude).  Most 

applications of MDS to social science data, however, involve 

estimating positions on dimensions that are subjective in 

nature, for example, left-right ideological positions of 

legislators.  As there is no ‘true’ set of coordinates in such 

settings, the relative placement of the points (as illustrated 

in figure 1) will always be arbitrary.  In addition, the 

observed data will be noisy.  Consequently, given a relative 

placement, it is highly desirable that the uncertainty in the 

distances is reflected in the estimated coordinates.  In other 

words, we are not only interested in the relative positions of 
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certain objects (i.e. legislators) but also how certain we are 

about these estimated positions.  This is particularly the case 

when using MDS solutions for statistical inference. 

In Psychology various methods of multidimensional scaling 

(MDS) have been developed during the past 60 years to analyze 

similarities data. MDS methods model these similarities as 

distances between points in a geometric space (usually simple 

Euclidean). These MDS programs were designed to produce a 

picture or spatial map that summarizes the data graphically. MDS 

analyses are almost always in three dimensions or less because 

the whole raison d'être of MDS methods is to produce a visual 

summary. In this sense, a matrix of similarities/dissimilarities 

data can be regarded as having a geometric map embedded within 

it. 

The purpose of an MDS method is to recover this geometric 

map.  This requires a set of assumptions about the 

dissimilarities that allow them to be represented as points in 

an Euclidean space.  The simplest assumption is just to model 

the observed dissimilarities as noisy realizations of the 

underlying true distances.  For example, denote the observed 

dissimilarity (distance) as *
jmd  where 

*
jmd  = jmd  + jmε                     (1) 
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Where j and m are both indices for the stimuli; i.e., j=1,…,q; 

m=1,…,q.  Let Zjk be the jth stimulus coordinate on the kth 

dimension, k=1,…,s, where s is the number of dimensions.  Let jmd  

be the Euclidean distance between stimulus j and stimulus m in 

the s-dimensional space: 

    2

1
 = (  -  )

s

jm jk mk
k

d Z Z
=
∑                         (2) 

and 

* 2 = (0, )jm jm jmd d Nε σ−                (3) 

or 

( )*
2

1

1
2

1
2 2

2

1  
(2 )

s

jm jk mk
k

d Z Z

jm e σ
ε

πσ

=

 
 − − −
 
 

∑
  

This produces the likelihood function: 

L*(Zjk|D*) =

( )
1 2*

2
1 1 1

1
2

q(q-1)/2
2 2

2

1

(2 )

q q s

jm jk mk
j m j k

d Z Z

e σ

πσ

−

= = + =

 
 − − −
 
 

∑ ∑ ∑

(4) 

Where D* is the q by q matrix of observed dissimilarities.  

Taking the log of the right hand side and dropping the 

unnecessary constants yields a standard squared error loss 

function: 
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( ) ( )
2

1 1 22* *

1 1 1 1 1

q q q qs

jm jk mk jm jm
j m j k j m j

n d Z Z d dξ
− −

= = + = = = +

 
= − − − = − −  

 
∑ ∑ ∑ ∑ ∑    (5) 

In standard optimization methods the first derivatives of 

(5) are used to find maximum likelihood estimates of the points.  

However, these derivatives are problematic because they all 

contain the ratio 
*
jm

jm

d
d

 which is undefined when Zj = Zm so that djm 

= 0.  In practice this is not a problem but it and the fact that 

distances cannot be negative means that the statistical 

properties are not clear and that the assumption about the 

error, equation (3), is dicey at best.  Nevertheless, finding 

Z’s that minimize (or maximize as in equation (5)) the squared 

error loss function is relatively easy.   

We now turn to a more realistic model of the data.  We 

assume that the observed distances, *
jmd , are drawn from the log-

normal distribution because distances are inherently positive: 

* 2ln( ) (ln( ), )jm jmd N d σ                (6) 

That is 

( )2*
2

1 ln( ) ln( )
* 2

1
2 *2

1( )  
(2 )

jm jmd d

jm

jm

f d e
d

σ

πσ

 − − 
 =  

Other researchers have used the truncated normal (Oh and 

Raftery, 2001), the normal (Navarro and Lee, 2003), and the 
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normal with an exponential mean (Okada and Shigemasu, 2010).  We 

prefer the log-normal because we think it is more realistic 

model of the noise process; viz., the smaller the observed 

distance the smaller the variance of that distance.   

Our likelihood function is: 

L*(Zjk|D*)=

( ) ( )
1 2*

2
1 1 1

1 ln ln1 2

q(q-1)/2 *
1 12 2

2

1 1

(2 )

q q s

jm jk mk
j m j k

d Z Zq q

j m j jm

e
d

σ

πσ

−

= = + =

  
  − − −−   

  

= = +

∑ ∑ ∑ 
  
 
∏ ∏ (7) 

 

To implement our Bayesian model we use simple normal prior 

distributions for the stimuli coordinates:   

   ξ(Zjk) = 

2

22
1

2 2

1

(2 )

jkZ

e κ

πκ

−

                      (8) 

and an uniform prior for the variance term: 

2 1( ) ,  0< c < b
c

ξ σ =                       (9) 

where, empirically, b is no greater than 2. 

 Hence, our posterior distribution is: 

ξ(Zjk|D*) ∝ { }
1

* 2
11 12 1 21

1 1

( | ) ( ) ( )... ( ) ( )... ( ) ( )
q q

jm jm jm s qs
j m j

f Z d Z Z Z Z Zξ ξ ξ ξ ξ ξ σ
−

= = +
∏ ∏  (10) 
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Taking the log of the right hand side and dropping the 

unnecessary constants: 

( ) ( )
2

1 22 *
2

1 1 1

2
2

1 1

( 1) / 2 1ln( ) ln ln
2 2

1                                                          ln( ) = 
2

q q s

jm jk mk
j m j k

q s

jk
j k

q qn d Z Z

Z c

ξ σ
σ

κ

−

= = + =

= =

  −
∝ − − − −      

 
− − 

 

∑ ∑ ∑

∑∑



  

( ) ( )( )
1 22 * 2

2 2
1 1 1 1

( 1) / 2 1 1ln( ) ln ln ln( )
2 2 2

q q q s

jm jm jk
j m j j k

q q d d Z cσ
σ κ

−

= = + = =

 −
− − − − − 

 
∑ ∑ ∑∑  (11) 

We experimented with vague and informative priors and found 

that the solutions were essentially identical for large 

matrices.  We discuss this in more detail below.  In the on-line 

appendix we show the first and second derivatives for (11).  In 

our estimation work we check the solutions with both numerical 

and analytical first and second derivatives. 

To illustrate our approach to similarities scaling, we use 

agreement scores computed between members of the U.S. 90th (1967-

68) Senate.  We chose the 90th Senate because it is well known 

that voting was two-dimensional during this period (Poole and 

Rosenthal, 1997).  Given q roll call votes, the agreement score 

is the number of times a pair of senators vote the same way 

(Yea, Yea or Nay, Nay) divided by the number of times that they 

both voted on the same roll calls and multiplied by 100.  The 

agreement scores range from 0 to 100 with 100 indicating 
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identical voting records.  Table 2 shows a few Senators and 

their agreement scores.  

[TABLE 2 HERE]  

We convert the agreement scores to distances by subtracting 

them from 100 and dividing by 50.  This is a convenient 

normalization because the estimated coordinates are usually in 

the unit hypersphere.  Note that we include President Lyndon 

Johnson in the matrix by using Congressional Quarterly’s 

presidential support roll calls.  That is, CQ indicates on a 

fair number of roll calls whether a Yea/Nay is a vote in favor 

of the President’s position.  Hence, the President can be 

treated as a Senator.  He just does not vote as often. 

 In this example, counting President Johnson, q is equal to 

102.  Our q by q symmetric matrix of distances has q(q-1)/2 

unique entries (we ignore the diagonal of zeroes).  Suppose 

there is an exact solution; that is, a set of q points in s 

dimensions that exactly reproduces the distances.  Clearly, 

given that we only observe the distances, it does not matter 

what origin, rotation around that origin, or sign flips on the 

dimensions we select as long as the configuration of points vis 

a vis one another is not altered.   

 With q points in s dimensions we have to solve for q*s 

coordinates.  However, we can set any point to the origin – 
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(0,0,…,0) – so this leaves us with q*s – s= (q-1)*s parameters.  

To pin down the configuration we need to set the rotation.  In 

general, in s dimensions, with one point set to the origin, a 

rigid rotation of the configuration is determined by s-1 angles 

from the origin.  In addition, given s-1 fixed angles in the 

rotation matrix, if we have a solution that exactly reproduces 

the matrix of distances then there are an additional 2s-1 

solutions that exactly reproduce the distances.  These 

additional solutions are simply sign flips on the dimensions.  

For example, with s=2, suppose that we have a solution such that 

it reproduces our matrix of distances.  Then there are three 

more solutions that also exactly reproduce the distances.   

To fix the origin we set Senator Hill (D-AL) at the origin 

and we fix President Johnson’s second dimension coordinate at 

zero which has the effect of fixing the angle from the origin in 

the rotation matrix.  We use the Nelder-Mead (1965) amoeba 

method and the Powell (1973) method to obtain 1001 solutions for 

our log-posterior, equation (11), from random starts.  The best 

solution and its reflections are shown in Figure 2.  The tokens 

in the plots indicate the political party of the member -- "D" 

for northern Democrat, "S" for southern Democrat, and "R" for 

Republican.  We computed both numerical and analytical first and 

second derivatives for the optimal solution to check that the 
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Hessian was full rank (i.e., negative-definite; see the on-line 

appendix). 

[FIGURE 2 HERE] 

 Of the 1001 solutions for the Bayes posterior, only 3 were 

the solution (and its reflections) shown in figure 2.  The log-

likelihood was about -3100.0.  The value for σ2 was 0.1104.  The 

extreme non-linearity of the log-normal likelihood function 

meant that a large number of modes were found by the optimizers.  

Many of these were quite close together in terms of log-

likelihood.   

 In two dimensions fixing the origin and one coordinate of 

another point at zero is enough to pin down four identical 

posteriors corresponding to the sign flips as shown in figure 2.  

This is enough so that an optimizer can find modes but not 

enough for the efficient use of MCMC methods because of the 

reflections.  That is, each member of the chain is a 

configuration.  If the chain explores the entire hyperplane of 

the parameters then the means of all the coordinates will be 

zero because of the symmetry of the modes.  However, in practice 

we can let the chain wander through the ((q-1)*s)-1 dimensional 

hyperplane and post-process the results by flipping the signs of 

each configuration in the chain back to a target configuration.  

This approach is very similar to that advocated by Bradlow and 
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Schmittlein (2000), Oh and Raftery (2001), Hoff, Raftery, and 

Handcock (2002), and Gormley and Murphy (2006).   

 For small similarities problems we found that in addition 

to the origin and one fixed coordinate simply adding three sign 

constraints to the three fixed coordinates isolated a single 

posterior.  That is, keep the three constraints used to find the 

modes and then restrict three coordinates to be 

positive/negative.  This works well and it is easy to implement 

in WinBUGS by using the I(,0) or I(0,) operators. 

 For larger problems like the 90th Senate agreement scores we 

retain the origin and one fixed coordinate and then solve for 

the sign flips by computing simple correlations dimension by 

dimension between coordinates from each draw in the chain (a 

configuration of points) and the coordinates from the optimizer 

solution.   

The left panel of figure 3 shows the results for the 90th 

Senate (we adjusted the coordinates to -1 to +1 for presentation 

purposes).  We ran multiple chains using a slice sampler (Neal, 

2003) for 110,000 iterations and treated the first 10,000 draws 

as burn-in.  The configuration is the mean of draws 10,001 to 

110,000 (all the chains produced essentially identical results).  

The configuration is similar to that shown in figure 2.  The 

variance term is precisely estimated with a standard deviation 

of 0.0026.  The standard deviations around the points range from 
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about 0.08 to 0.18 with the largest being 0.25.  Additionally, 

we assessed convergence using the Geweke, Heidelberger-Welch and 

Raftery and Lewis diagnostics. According to these diagnostics, 

the posteriors for all parameters meet all criteria for 

convergence.  Also we experimented with informative priors 

( 2κ =1) and vague priors ( 2κ =100) and the results did not change. 

The right panel of figure 3 compares our Bayesian results 

with the best available MDS procedure; SMACOF (scaling by 

maximizing a convex function) developed by Jan De Leeuw and his 

colleagues (1977, 1988; De Leeuw and Heiser, 1988; De Leeuw and 

Mair, 2009).  SMACOF is a sophisticated scaling method that 

minimizes the sum of squared error as given in equation (5) 

above (technically, the negative of equation (5)).  SMACOF can 

perform non-metric MDS (Shepard, 1962a,b; Kruskal, 1964a,b) and 

has a flexible structure so that missing data is easily handled 

(See the R implementation, De Leeuw and Mair, 2009).  We also 

use it below in our unfolding examples.   

Our Bayesian configuration is essentially identical to the 

SMACOF configuration despite the very different models of the 

data.  The advantage of a Bayesian approach is that we are able 

to get measures of uncertainty for the points.  SMACOF is a 

classical scaling procedure that does not produce standard 

errors for the points.  However, note in the Bayesian model 

fixing three coordinates has the effect of "transmitting" the 
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uncertainty associated with those coordinates to other points.  

There is no solution for this.  It is just inherent in the 

problem. 

[FIGURE 3 HERE] 

 Our approach has the advantage of isolating one posterior 

distribution and then analyzing it with standard MCMC methods.  

Our approach is computationally simple and can be implemented in 

publicly available software such as WinBUGS and JAGS.  In the 

on-line appendix we show our WinBUGS script for the 90th Senate.  

We used informed priors derived from the Nelder-Mead 

configuration to stabilize the sampler in WinBUGS.   

We now turn to a discussion of how to apply our approach to 

the unfolding problem. 

 

3. A Bayesian Multidimensional Unfolding Model 

 

In the unfolding problem we have two sets of points – one 

for individuals and one for stimuli. We are given only the noisy 

ratio scale distances between the two sets and not the distances 

within each set.  We focus here on a Bayesian unfolding model 

based on the spatial model of choice.  We assume that the 

individuals have symmetric single-peaked utility functions.  

Hence, we use an ideal point model in contrast to a vector model 

of choice.  In a vector model the underlying utility of an 
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individual is not single-peaked.  Rather, the utility increases 

through the space of the stimuli along the individual’s vector 

(direction) through the space similar to the one-dimensional IRT 

model.  Much work has been done on Bayesian vector and mixed 

models of unfolding in the marketing literature (Park, DeSarbo, 

and Liechty, 2008; Fong, DeSarbo, Park, and Scott, 2010; 

DeSarbo, Park, and Rao, 2010). 

Denote the observed distance as *
ijd  where 

*
ijd  = ijd  + ijε                     (12) 

Where n is the number of individuals, i=1,…,n, and Xik is the ith 

individual coordinate on the kth dimension.  As before let Zjk be 

the jth stimulus coordinate on the kth dimension, k=1,…,s, where s 

is the number of dimensions.  Let ijd  be the Euclidean distance 

between individual i and stimulus j in the s-dimensional space: 

    2

1
 = (  -  )

s

ij ik jk
k

d X Z
=
∑                     (13) 

As before, we assume that the observed distances, *
ijd , are 

drawn from the log-normal distribution: 

* 2ln( ) (ln( ), )ij ijd N d σ                

Which produces the likelihood function: 
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L*(Xik,Zjk|D*)=

( ) ( )2*
2

1 1 1

1 ln ln
2

nq *
1 12 2

2

1 1

(2 )

qn s

ij ik jk
i j k

d X Zqn

i j ij

e
d

σ

πσ

= = =

  
  − − −
  

  

= =

∑∑ ∑ 
  
 
∏∏ (14) 

We use simple normal prior distributions for the individual 

and stimuli coordinates:   

   ξ(Xik) = 

2

22
1

2 2

1

(2 )

ikX

e ζ

πζ

−

            

   ξ(Zjk) = 

2

22
1

2 2

1

(2 )

jkZ

e κ

πκ

−

                

and an uniform prior for the variance term: 

2 1( ) ,  0 < c < b
c

ξ σ =                       

where b, empirically, is no greater than 2. 

 Hence, our posterior distribution is: 

ξ(Xik,Zjk|D*) ∝ { }* 2
11 11

1 1

( , | ) ( )... ( ) ( )... ( ) ( )
qn

ij ik jk ij ns qs
i j

f X Z d X X Z Zξ ξ ξ ξ ξ σ
= =
∏∏  (15) 

Taking the log of the right hand side and dropping the 

unnecessary constants: 



21 
 

( ) ( )
2

22 *
2

1 1 1

2 2
2 2

1 1 1 1

1ln( ) ln ln
2 2

1 1                                       ln( ) = 
2 2

qn s

ij ik jk
i j k

qn s s

ik jk
i k j k

nqn d X Z

X Z c

ξ σ
σ

ζ κ

= = =

= = = =

  
∝ − − − −      

  − − −  
   

∑∑ ∑

∑∑ ∑∑



  

( ) ( )( )22 * 2 2
2 2 2

1 1 1 1 1 1

1 1 1ln( ) ln ln ln( )
2 2 2 2

q qn n s s

ij ij ik jk
i j i k j k

nq d d X Z cσ
σ ζ κ= = = = = =

  − − − − − −  
   

∑∑ ∑∑ ∑∑  (16) 

We experimented with vague and informative priors for both 

the ζ and the κ and found that the results were essentially the 

same.  In the on-line appendix we show the first and second 

derivatives for (16).   

Our unfolding example is the classic 1968 National Election 

Study feeling thermometers.  A feeling thermometer asks 

individuals to respond to a set of stimuli (political figures in 

this case) based on their subjective views of warmth towards 

them. The thermometer ranges from 0 to 100 degrees with 100 

indicating warm and very favorable feeling, 50 indicating 

neutrality towards the political figure, and 0 indicating that 

the respondent feels cold and very unfavorable towards the 

political figure.  The 1968 feeling thermometers have been 

analyzed by Weisberg and Rusk (1970), Wang, et al. (1975), 

Rabinowitz (1976), Cahoon, et al. (1978), Poole and Rosenthal 

(1984), and Brady (1990) with the main focus on modeling the 

latent dimensions underlying the thermometers as well as testing 

theories of spatial voting.    
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In the NES 1968 survey twelve political figures were 

included in the thermometer questions: George Wallace, Hubert 

Humphrey, Richard Nixon, Eugene McCarthy, Ronald Reagan, Nelson 

Rockefeller, President Johnson, George Romney, Robert Kennedy, 

Edmund Muskie, Spiro Agnew, and Curtis LeMay.  There were 1,673 

respondents and we included in our analysis the 1,392 

respondents who rated at least five of the twelve political 

figures.  

We perform our analysis in two dimensions because previous 

analyses using optimization methods almost all find two 

dimensions in the data.  We think this is due to the 

idiosyncratic noise in the thermometers (see Abrajano and Poole, 

2011, for a discussion) and valence effects (Adams, Merrill, and 

Grofman, 2005; Londregan, 2000; Merrill and Grofman, 1999).  A 

second dimension is picking up some of these effects and 

“smoothing” out the first dimension.  Modeling valence effects 

is difficult so we leave that for future work.  In any event, 

our aim here is to show the advantages of our Bayesian approach.  

Namely, a properly designed Markov chain reveals much more 

information than simply the modes of a loss function. 

 Finding the optimal solution for the unfolding problem 

is challenging because of the number of parameters.  We used 

Limited-memory BFGS which can handle very large problems and is 

computationally efficient (see Liu and Nocedal, 1989, for a 
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discussion).  In two dimensions this required a search over a 

2,805 dimensional hyperplane.  We set George Romney at the 

origin and Eugene McCarthy’s second dimension coordinate at zero 

to obtain identification.  We checked the first derivatives (see 

the on-line appendix) for the starting configuration to be sure 

that our points were located on a mode of the loss function, 

equation (16). 

 Using the respondent and candidate coordinates as targets 

we were able to run a slice sampler on the 1968 data (Neal, 

2003).  Because the ratio of respondents to the candidates is so 

large, we found that the method that worked the best was to 

first draw the respondent coordinates and then the candidate 

coordinates.  We kept Romney at the origin but we did not 

constrain any other points because we found that simply rotating 

the drawn configuration to the optimal configuration with Romney 

at the origin was simple and easy to implement (see the on-line 

appendix for further detail).  We ran our chain to 110,000 draws 

with the first 10,000 as burn-in.  Figure 4 shows the results. 

[FIGURE 4 HERE] 

 The upper left panel of Figure 4 shows the respondents 

along with tokens indicating the locations of Humphrey, Nixon, 

and Wallace.  The lower left panel shows the candidate 

configuration.  We display those respondents who indicated that 

they voted for Humphrey, Nixon, or Wallace, as the tokens "h", 
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"n", or "w", respectively.  Humphrey, Nixon, and Wallace are 

located near where their voters are concentrated.    

 The upper right and lower right panels of Figure 4 show the 

results for an unfolding using SMACOF.  Only Humphrey is located 

within where his voters are concentrated.  In addition, the 

candidate configuration from SMACOF is bunched up save for 

Wallace and his running mate LeMay who are pushed outward.  

These differences arise from the fact that the simple additive 

model (the true distance plus noise) as in equation (12) does 

not work well with the thermometer data.  This is due to the 

fact that there are a lot of thermometer scores close to 100. 

The log-normal is a more realistic model of the data because the 

standard error gets smaller as the distances get smaller. 

   We also tested the MAP unfolding procedure developed by 

Hinich (2005).  MAP uses a maximum likelihood factor analysis of 

the covariance matrix computed from the squared distances to 

recover the stimuli and then OLS using the stimuli to recover 

the respondent locations.  Although MAP is computationally 

efficient, the configuration of respondents produced by MAP is 

not as clean as that produced by SMACOF.  We consider SMACOF to 

be a better unfolding procedure.  Hence, we show only 

comparisons with SMACOF.  

 Figures 5 and 6 show thermometer unfolding results for the 

2000 and 2004 elections.  Again the Bayesian unfolding results 
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place the major candidates among their supporters and in these 

two elections the results are largely one dimensional.  The 

SMACOF results tend to spread the voters out more on the second 

dimension but the location of the major presidential candidates 

is reasonable.  

[FIGURES 5 and 6 HERE] 

 The candidates in the Bayesian unfoldings are precisely 

estimated.  For example, in 1968 the largest standard deviation 

was for George Wallace's second dimension coordinate at 0.11.  

Figure 7 shows the bivariate densities for the three major 1968 

Presidential candidates.  All are unimodal over the two 

dimensional space. 

[FIGURE 7 HERE] 

 The respondents were less precisely estimated.  For 

example, Figure 8 shows the distribution of the 100,000 draws 

for the coordinates of respondent number 2 in 1968.  The 2nd 

respondent was a young white male Democrat.  He did not like 

Wallace, LeMay, Agnew, and Reagan (15, 30, 30, 30) but he was a 

little warmer towards Nixon and Romney (40, 40).  He was less 

than enthused with President Johnson and Hubert Humphrey (50 and 

60) but he really liked Robert Kennedy, Nelson Rockefeller, and 

Eugene McCarthy (97, 97, 85).  His preferences roughly line up 

left to right but not entirely.  This is reflected in the 

bimodal distribution of the draws.  Most of the draws are in the 
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lower mode around -0.7, -0.6 with a smaller number around -0.5, 

0.1.  This shows the advantage of a Bayesian approach.  A mode 

finder (optimization method) will land on one of the two modes 

whereas a Markov chain “illuminates” the entire distribution.   

[FIGURE 8 HERE] 

   

4. Conclusion 

 In this paper we have shown how to apply Bayesian methods 

to noisy ratio scale distances for both the classical 

similarities problem as well as the unfolding problem.  Our 

approach combines the advantages of traditional mode finders and 

Bayesian MCMC.  We use the mode finders to give us a target that 

identifies (“freezes”) the posterior for the Markov chain 

generator.   

 Our unfolding example using the 1968 candidate thermometers 

shows the power of MCMC (made possible by the speed of modern 

computers) to illuminate complex distributions.  Instead of 

modes with their associated standard deviations from the inverse 

Hessian, "painting" the entire posterior distribution allows us 

to show means and the complete distribution of the parameters.   

 Our results are preliminary.  We deliberately kept our 

models simple because our aim was to revisit older problems 

using modern methods.  We think the thermometers are an 

underutilized resource that potentially can reveal important 
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information about individuals' utilities for political figures.  

Our aim here was simply to show a basic method that can be used 

as a springboard to more complex analyses.   
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Appendix to 

BAYESIAN METRIC MULTIDIMENSIONAL SCALING 

 This Appendix shows a set of proofs of the existence of 

full rank Hessians for metric MDS in section A1; WINBUGS code 

for the Bayesian dissimilarities scaling of the 90th Senate 

disagreement scores in A2; and the first and second derivatives 

for the similarities and unfolding models corresponding to 

equations (11) and (16) respectively, in A3. 

In section A1 we show how to identify solutions for metric 

MDS problems.  By identification what we mean is estimating the 

smallest number of parameters such that the Hessian matrix 

corresponding to a solution is full rank.  If too many 

parameters are estimated the Hessian is singular.  If too few 

are estimated then the log-posterior is distorted and a sub-

optimal solution will be the result.   

 Assume that our dissimilarities data are squared distances 

between pairs of stimuli (the analysis of unfolding data is 

essentially the same).  Our q by q symmetric matrix of data has 

q(q-1)/2 unique entries (we ignore the diagonal of zeroes).  

Suppose there is an exact solution; that is, a set of q points 

in s dimensions that exactly reproduces the squared distances.  
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Clearly, given that we only observe the distances, it does not 

matter what origin and the rotation around that origin we select 

as long as the configuration of points vis a vis one another is 

not altered.   

 With q points in s dimensions we have to solve for q*s 

parameters.  However, we can set any point to the origin – 

(0,0,…,0) – so this leaves us with q*s – s= (q-1)*s parameters.  

To pin down the configuration we need to set the rotation.  In 

general a rotation matrix is determined by s-1 angles from the 

origin and sign flips on each dimension.  For example, in two 

dimensions the general form of the rotation matrix is: 

cos sin
 0 2

sin cos
θ θ

θ π
θ θ

 
Γ = ≤ ≤ − 

              

However, note that given a specific θ we have four rotation 

matrices: 

1

cos sin
sin cos
θ θ
θ θ

 
Γ =  − 

 2

cos sin
sin cos

θ θ
θ θ

− 
Γ =  

 
 3

cos sin
sin cos
θ θ
θ θ

− 
Γ =  − − 

 4

cos sin
sin cos

θ θ
θ θ

− − 
Γ =  − 

 

Or 

1 0
 where =

0 1
± 

Γ = ∆Γ ∆  ± 
                    
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That is, given a specific θ, there are 2s sign flips 

corresponding to the s columns of the rotation matrix.  With 

s=2, suppose that we have a solution Z  such that it reproduces 

our matrix of squared distances, D.  Then there are three more 

solutions corresponding to the above rotation matrices that also 

exactly reproduce D.  In general, in s dimensions, with one 

point set to the origin with s-1 fixed angles in the rotation 

matrix, if we have a solution Z  that exactly reproduces the 

matrix of squared distances then there an additional 2s-1 

solutions that exactly reproduce D.   

 This identification problem is very similar to that 

discussed by Rivers (2003).  He discusses the identification of 

the classical maximum likelihood factor analysis problem and 

shows the number of restrictions necessary to get identification 

(these include fixing the origin and sign flips).  However, his 

main concern is the identification of the multidimensional IRT 

model where the data are indicators and he shows that fixing s+1 

points (or s(s+1) parameters) fully identifies the model.  Our 

result is different because we assume that we observe (noisy) 

ratio scale data.  Identification is somewhat different in this 

setting. 

 With these preliminaries we turn to our existence proofs. 

A1:  Existence Proofs for the Hessian 
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We have a total of (s*q)+1 parameters – the q points plus 

2σ  ( 2κ  is a fixed constant) for the similarities problem.  For 

the unfolding problem we have (s*(n+q))+1 parameters.  Because 

only distances, the *
jmd and the djm, are used in the log-posterior, 

we impose the constraints that *ln( ) 0,> ∀ ≠jmd j m (or *ln( ) 0, ,> ∀ijd i j) and 

ln( ) 0,> ∀ ≠jmd j m (or ln( ) 0, ,> ∀ijd i j ) for our proofs below.  If any *
jmd or 

djm is equal to zero for j≠m then equation (11) is equal to -∞.  

As a practical matter, this is not a problem for the observed 

data, *
jmd , because it can be rescaled or the corresponding jth 

column and jth row can be dropped on the assumption that the 

underlying jth and mth stimuli are the same.   

For the unfolding problem if a *
ijd  is zero then equation 

(16) is equal to -∞.  Again, as a practical matter the offending 

*
ijd  can be rescaled (e.g., set to a small distance greater than 

zero) or treated as missing data.   

In our proofs below we analyze only the similarities 

problem because the unfolding problem is a subset of the 

similarities problem albeit with missing data.  That is, we 

could set 
ZW
X

 =   
 where W is a (q+n) by s matrix and all the 

proofs would hold using W instead of Z.   
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In our proofs we assume that all the points are distinct; 

that is, 

Definition:  A set of points is distinct if 0 > ∀ ≠jmd j m , or 

equivalently, ∀ j,m=1,…,q, and j≠m, Zj ≠ Zm.   

In practice distinctness is not a serious problem because 

if two points were the same, that is, Zj = Zm , then there is a 

“pinhole” that goes down to -∞ in the surface of equation (11).  

Such a “pinhole” cannot be a maximum in any event.  We simply 

avoid the problem by always “moving around” them. 

Let *nξ  denote the right hand side of equation (11).  For 

any configuration of points in s dimensions, 1 2 1, ,..., ,−q qZ Z Z Z , there 

is a unique 2σ which is simply the mean of the q(q-1)/2 squared 

differences between *ln( )jmd  and ln( )jmd  (see equation (A3) and (A12) 

in Appendix A3).   Hence we will ignore it in the notation below 

and simply assume that it is computed from the configuration; 

that is, 2σ (Z) or 2σ (Z,X).   

Given a configuration of points in s dimensions, there are 

an infinite number of configurations that produce the same *nξ  

by adding a constant and rotating the original configuration.  

Let Ω be the set 
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   { }1 2 1, ,..., , , ,−Ω = Γq qZ Z Z Z α     (A1) 

where α is an s-length vector of additive constants and Γ is an 

s by s rotation matrix.  Let ( )*nξ Ω  be the function value for 

the set Ω.  This allows us to state a simple non-existence 

theorem for the Hessian. 

Theorem 1: Given Ω such that all Z are distinct, then the 

Hessian for any Ω that maximizes *
nξ  will be singular. 

Proof:  Given that there are an infinite number of 

configurations of points, there are an infinite number of Ω.  

However, since every possible configuration is a member of some 

Ω we can compute all possible values of ( )*nξ Ω .  Hence, it must 

be the case that for some Ω*, ( ) ( )* * * *n nξ ξΩ ≥ Ω ∀Ω ≠ Ω  .  However, no 

member of Ω* can be an inflection point because there are an 

infinite number of configurations in Ω* within any arbitrary 

distance from any selected configuration.  Therefore the Hessian 

is singular for all members of Ω*.  Q.E.D. 

Note that because ( )* *Ωnξ  is the value for every element of 

Ω* then this results in a uniform distribution over a subspace 

of the real q*s hyperplane of the parameters (much like a "mesa" 

but infinitely long).  The same is true for other Ω ≠ Ω*.  



34 
 

Geometrically, there are an infinite number of stacked uniform 

"mesas" over the q*s hyperplane of the parameters with Ω* having 

the highest “altitude” ( )* *Ωnξ .  If one point is set to the 

origin then we still have an infinite number of stacked uniform 

"mesas" but now the radius of each “mesa” is finite with a value 

of 2

1 1

q s

jk
j k

Z
= =
∑∑  where one of the Zj=0.  

We now show that with q distinct points and s(s+1)/2 hard 

constraints the Hessian is full rank.  Without loss of 

generality, we can pick α and Γ so that the q by s coordinate 

matrix, Z , has the following form: 

 

11 12 13 1, 1 1

21 22 23 2, 1 2

1,1 1,2 1,3 1, 1

,1 ,2 ,3

2,1 2,2

1,1

0
0 0

0 0 0
0 0 0 0

0 0 0 0 0

−

−

− + − + − + − + −

− − −

− −

−

 
 
 
 
 
 
 =
 
 
 
 
 
 
 





















q q

q q

q s q s q s q s q

q s q s q s

q q

q

Z Z Z Z Z
Z Z Z Z Z

Z Z Z Z
Z Z Z Z

Z Z
Z

  (A2) 

That is, we set Zq to the origin and then pick s-1 angles 

for Γ such that all but one of the coordinates for Zq-1 are equal 

to zero, all but two of the coordinates for Zq-2 are equal to 

zero, and so on.  As we explained above, we have the sign flips, 
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Γ = ∆Γ , where Δ is an s by s diagonal matrix with plus or minus 

ones on the diagonal.  Given s-1 specific angles, θ1 , θ2 ,..., 

θs-1 , then there are 2s sign flips corresponding to the s columns 

of the rotation matrix.  This allows us to define  

     { },Ω = ∆Z       (A3) 

Theorem 2: Given Ω as in (A3) such that all Z  are distinct, 

then the Hessian for any Ω that maximizes *
nξ  will be rank q*s-

(s*(s+1)/2). 

Proof:  Every configuration of points, Z, can be 

transformed into Z  as in equation (A2) by choice of origin and 

rotation without changing the inter-point distances.  Given that 

there are an infinite number of configurations of points, Z, and 

each one can be transformed into a Z  that satisfy equation (A2), 

there are an infinite number of Ω that satisfy equation (A3).  

However, since every possible Z  configuration is a member of 

some Ω, then we can compute all possible values of ( )*nξ Ω .  

Hence, it must be the case that for some Ω*, 

( ) ( )* * * *n nξ ξΩ ≥ Ω ∀Ω ≠ Ω  .  By construction, given s-1 specific 

angles, θ1 , θ2 ,..., θs-1 , then there are 2s sign flips 

corresponding to the s columns Δ.  Hence, Ω* has 2s members and 

each is separated from the others by a distance of at least 
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1 1 1
2 2 2
1 2

1 1 1
min 2 ,2 ,..., 2 0

− − −

= = =

  = > 
  

∑ ∑ ∑  

q q q

j j js
j j j

Z Z Zδ .  Denote these configurations 

as *
Z  so that { }* *,Ω = ∆Z . Consider any nearby configuration of 

distinct points, Z , { },Ω = ∆Z , within an infinitesimal distance 

of Ω*; that is, ( )2*

1 1
0

= =

= − >∑∑  

q s

jk jk
j k

Z Zγ .  Hence, by construction 

( ) ( )* * *n nξ ξΩ > Ω  .  Because this is true for an infinitesimal 

distance on the q*s-(s*(s+1)/2) dimensional hyperplane in any 

direction from *
Z , the 2s members of Ω* are inflection points 

with corresponding full rank Hessians. Q.E.D.   

Note that the key difference between Theorems 1 and 2 is 

that Ω* in Theorem 1 had an infinite number of members and in 

Theorem 2 Ω* had 2s members.  In Theorem 1 this meant that no 

member of Ω* could be an inflection point because there are an 

infinite number of members within an infinitesimal distance of 

any selected member (the "mesa").  In contrast, the 2s members of 

Ω* from Theorem 2 are separated from each other by non-zero 

distances.  Hence, it is easy to show using a standard argument 

from mathematical analysis that any configuration not in Ω* that 

is an infinitesimal distance from one of the 2s members of Ω* 

must be, by construction, less than the maximum; that is, 

( ) ( )* * *n nξ ξΩ > Ω  .   
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We now show two corollaries: first, if the number of hard 

constraints is less than s(s+1)/2, then the Hessian is singular; 

and second, if the number of hard constraints is greater than 

s(s+1)/2 then the solution is inferior in the sense that 

( ) ( )* * *n nξ ξΩ > Ω  .   

Corollary 1: Let the number of hard constraints be less 

than s(s+1)/2.  Given Ω such that all Z are distinct, then the 

Hessian for any Ω that maximizes *
nξ  will be singular. 

Proof:  Suppose that the number of hard constraints is 

(s(s+1)/2)-1.  Without loss of generality modify Z  so that 

1,q s qZ − +−∞ < < +∞, that is, coordinate 1,q s qZ − +  is not constrained to be 

zero.  Denote this modified configuration as ( 1)−
Z .  There are an 

infinite number of Ω that satisfy { }( 1) ,−Ω = ∆Z .  However, since 

every possible ( 1)−
Z  configuration is a member of some Ω, then we 

can compute all possible values of ( )*nξ Ω .  Hence, it must be 

the case that for some Ω*, ( ) ( )* * * *n nξ ξΩ ≥ Ω ∀Ω ≠ Ω  .  Ω* has an 

infinite number of members because, by construction, 

1,q s qZ − +−∞ < < +∞.  However, no member of Ω* can be an inflection 

point because there are an infinite number of configurations in 

Ω* within any arbitrary infinitesimal distance from any selected 
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configuration in the direction of 1,q s qZ − + .  Therefore the Hessian 

is singular for all members of Ω*.  Finally, it is easy to 

construct similar arguments for ( 2)−
Z , ( 3)−

Z , etc. Q.E.D.   

Corollary 2: Let the number of hard constraints be greater 

than s(s+1)/2.  Given Ω such that all Z are distinct, then the Ω 

that maximizes *
nξ  will be less than *

nξ  for a Z with (s+1)/2 

hard constraints as in equation (A2). 

Proof:  Suppose that the number of hard constraints is 

(s(s+1)/2)+1.  Without loss of generality modify Z  so that an 

additional coordinate is constrained to be a constant; for 

example, let 1, 1 1, 1− + − − + −=q s q q s qZ C .  Denote this modified configuration 

as ( 1)+
Z .  However this modified configuration is a member of some 

Ω used in Theorem 2.  From Theorem 2 we have 

( ) ( )* * * *n nξ ξΩ ≥ Ω ∀Ω ≠ Ω  .  Hence, unless 1, 1− + −q s qC  is exactly equal to 

1, 1− + −q s qZ  in Ω* ( ) ( )* * *n nξ ξΩ > Ω  .  Finally, it is easy to construct 

similar arguments for any subset of additionally constrained 

coordinates.  Q.E.D.  

In one dimension, setting one point to the origin results 

in two solutions with the same *nξ  values.  For purposes of 

characterizing the distributions of the parameters with MCMC 
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methods, setting the sign -- a soft constraint -- on a second 

point (typically a point that is distant from the origin) 

isolates one log-posterior.  So we get a unique log-posterior 

with one hard and one soft constraint.  However, note that, if 

we use two hard constraints by fixing two points we get an 

inferior result because we have fixed one of the distances.   
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A2:  WINBUGS SIMILARITIES MODEL 

# 
#  MDS Model for 90th Senate--over constrained 
# 
model{ 
 
#  Fix one point 
# 
        x[8,1] <- -0.626000480 
………………  x[8,2] <-  0.46524749 
# 
# llh and sumllh monitor the log-likelihood 
# 
for (i in 1:101){ 
    llh[i,i] <- 0.0 
    for (j in i+1:102){ 
# 
#  Read in Distances rather than the similarities (makes handling missing data easier) 
# 
         dstar[i,j] ~ dlnorm(mu[i,j],tau) 
         mu[i,j] <- log(sqrt((x[i,1]-x[j,1])*(x[i,1]-x[j,1])+(x[i,2]-x[j,2])*(x[i,2]-x[j,2]))) 
         llh[i,j] <- (log(dstar[i,j])-mu[i,j])*(log(dstar[i,j])-mu[i,j]) 
         llh[j,i] <- (log(dstar[i,j])-mu[i,j])*(log(dstar[i,j])-mu[i,j]) 
    } 
} 
 
   llh[102,102] <- 0.0 
   sumllh <- sum(llh[,])  
#    
  ## priors 
  tau ~ dgamma(1,1) 
 
# 
# Informed priors placed below (not all shown) 
# 
  x[1,1] ~ dnorm(0,.1) I(0,) 
  x[1,2] ~ dnorm(0,.1) I(,0) 
  x[2,1] ~ dnorm(0,.1) I(,0) 
  x[2,2] ~ dnorm(0,.1) I(0,) 
 
...etc. etc. 
 
  x[98,1] ~ dnorm(0,.1) I(,0) 
  x[98,2] ~ dnorm(0,.1) I(0,) 
  x[99,1] ~ dnorm(0,.1) I(,0) 
  x[99,2] ~ dnorm(0,.1) I(, -0.5) 
  x[100,1] ~ dnorm(0,.1) I(,0) 
  x[100,2] ~ dnorm(0,.1) I(,-0.5) 
  x[101,1] ~ dnorm(0,.1) I(0.5,) 
  x[101,2] ~ dnorm(0,.1) I(0.2,) 
  x[102,1] ~ dnorm(0,.1) I(,-0.2) 
  x[102,2] ~ dnorm(0,.1) I(,0) 
 
} 
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A3:  The Derivatives for the Log-Normal Bayesian Model 

Similarities: The first derivatives for the similarities 

problem are: 

( ) ( )( ) ( )* 2
2 2

1

1
21 1 12 ln ln (  - ) 2  - 

2 2

q s
jk

jm jm jk mk jk mk
j m kjk jm

Zn d d Z Z Z Z
Z d
ξ

σ κ≠ =

−  ∂      = − − − −        ∂       
∑ ∑

 

which simplifies to 

( ) ( )( ) ( )
*

2 2 2

ln ln1  -  
q

jm jm jk
jk mk

j mjk jm

d d Zn Z Z
Z d
ξ

σ κ≠
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Hence, we get the usual result for the variance term: 
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Note that if κ2 is a vague prior, the practical effect is 

that at an inflection point we have 
2

2 0
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n n
Z Z

ξ ξ
σ

∂ ∂
≈ =

∂ ∂
 

.  Numerically, 

this is a handy result because it makes computing the inverse 

Hessian much easier to accomplish.  

The second derivative for the variance is: 
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Substituting (A3) into (A4) it is easy to show that 
2

2 2 0nξ
σ σ
∂

<
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 so 

that when the global maximum for the Zjk is found σ2 will be a 

maximum as well. 

The second derivatives for the coordinates are: 
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In more than one dimension   
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where 1,..., s=  and ℓ≠k. 

Unfolding: The first derivatives for the unfolding problem 

are: 
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Hence, we get the usual result for the variance term for the 

unfolding model: 
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Note that if ζ2 and κ2 are vague priors, the practical 

effect is that at an inflection point we have 
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The second derivative for the variance is: 
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Substituting (A12) into (A13) it is easy to show that 
2
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∂

<
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so that when the global maximum for the Xik and Zjk is found σ2 

will be a maximum as well. 

The second derivatives for the coordinates are: 
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Where h=1,...,n and h≠i.  In more than one dimension  
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Tables      

 
Table 1:  Driving Distances Between 5 Cities 

City Boston Detroit Chicago SF Miami 

Boston 0 702 983 3179 1539 

Detroit 702 0 279 2475 1409    

Chicago 983 279 0 2212 1309     

SF 3179 2475 2212 0 3097  

Miami 1539 1409 1390 3097 0 

 
Table 2:  Agreement Scores for 90th Senate (Partial) 

JOHNSON (D-Pres)     100  61  50  52  65  70  37 ... 

SPARKMAN (D-AL)       61 100  89  50  65  85  65 ... 

HILL (D-AL)           50  89 100  53  62  78  69 ... 

GRUENING (D-AK)       52  50  53 100  76  58  43 ... 

BARTLETT (D-AK)       65  65  62  76 100  70  47 ... 

HAYDEN (D-AZ)         70  85  78  58  70 100  57 ... 

FANNIN (R-AZ)         37  65  69  43  47  57 100 ... 
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FIGURES 

 Figure 1:  Solutions for 5 Cities Data 
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Figure 2:  Best 90th Senate Configuration and its Reflections 
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Figure 3:  90th Senate Bayesian and SMACOF Solutions  
 

 
 



54 
 

Figure 4: 1968 Thermometer Bayesian vs. SMACOF Unfolding  
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Figure 5: 2000 Thermometer Bayesian vs. SMACOF Unfolding 
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Figure 6: 2004 Thermometer Bayesian vs. SMACOF Unfolding 
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Figure 7: Major Candidates 1968 Presidential Election 
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Figure 8:  1968 NES Respondent 2 
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	With q points in s dimensions we have to solve for q*s coordinates.  However, we can set any point to the origin – (0,0,…,0) – so this leaves us with q*s – s= (q-1)*s parameters.  To pin down the configuration we need to set the rotation.  In general...
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	With q points in s dimensions we have to solve for q*s parameters.  However, we can set any point to the origin – (0,0,…,0) – so this leaves us with q*s – s= (q-1)*s parameters.  To pin down the configuration we need to set the rotation.  In general ...
	However, note that given a specific θ we have four rotation matrices:
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	That is, given a specific θ, there are 2s sign flips corresponding to the s columns of the rotation matrix.  With s=2, suppose that we have a solution   such that it reproduces our matrix of squared distances, D.  Then there are three more solutions c...
	This identification problem is very similar to that discussed by Rivers (2003).  He discusses the identification of the classical maximum likelihood factor analysis problem and shows the number of restrictions necessary to get identification (these i...
	We have a total of (s*q)+1 parameters – the q points plus   (  is a fixed constant) for the similarities problem.  For the unfolding problem we have (s*(n+q))+1 parameters.  Because only distances, the  and the djm, are used in the log-posterior, we i...
	For the unfolding problem if a   is zero then equation (16) is equal to -∞.  Again, as a practical matter the offending   can be rescaled (e.g., set to a small distance greater than zero) or treated as missing data.
	In our proofs below we analyze only the similarities problem because the unfolding problem is a subset of the similarities problem albeit with missing data.  That is, we could set   where W is a (q+n) by s matrix and all the proofs would hold using W ...
	In our proofs we assume that all the points are distinct; that is,
	Definition:  A set of points is distinct if  , or equivalently,   j,m=1,…,q, and j≠m, Zj ≠ Zm.
	In practice distinctness is not a serious problem because if two points were the same, that is, Zj = Zm , then there is a “pinhole” that goes down to -∞ in the surface of equation (11).  Such a “pinhole” cannot be a maximum in any event.  We simply av...
	Let   denote the right hand side of equation (11).  For any configuration of points in s dimensions,  , there is a unique  which is simply the mean of the q(q-1)/2 squared differences between   and   (see equation (A3) and (A12) in Appendix A3).   Hen...
	Given a configuration of points in s dimensions, there are an infinite number of configurations that produce the same   by adding a constant and rotating the original configuration.  Let Ω be the set
	(A1)
	where α is an s-length vector of additive constants and Γ is an s by s rotation matrix.  Let   be the function value for the set Ω.  This allows us to state a simple non-existence theorem for the Hessian.
	Theorem 1: Given Ω such that all Z are distinct, then the Hessian for any Ω that maximizes   will be singular.
	Proof:  Given that there are an infinite number of configurations of points, there are an infinite number of Ω.  However, since every possible configuration is a member of some Ω we can compute all possible values of  .  Hence, it must be the case tha...
	Note that because   is the value for every element of Ω* then this results in a uniform distribution over a subspace of the real q*s hyperplane of the parameters (much like a "mesa" but infinitely long).  The same is true for other Ω ≠ Ω*.  Geometrica...
	We now show that with q distinct points and s(s+1)/2 hard constraints the Hessian is full rank.  Without loss of generality, we can pick α and Γ so that the q by s coordinate matrix,  , has the following form:
	(A2)
	That is, we set Zq to the origin and then pick s-1 angles for Γ such that all but one of the coordinates for Zq-1 are equal to zero, all but two of the coordinates for Zq-2 are equal to zero, and so on.  As we explained above, we have the sign flips, ...
	(A3)
	Theorem 2: Given Ω as in (A3) such that all   are distinct, then the Hessian for any Ω that maximizes   will be rank q*s-(s*(s+1)/2).
	Proof:  Every configuration of points, Z, can be transformed into   as in equation (A2) by choice of origin and rotation without changing the inter-point distances.  Given that there are an infinite number of configurations of points, Z, and each one ...
	Note that the key difference between Theorems 1 and 2 is that Ω* in Theorem 1 had an infinite number of members and in Theorem 2 Ω* had 2s members.  In Theorem 1 this meant that no member of Ω* could be an inflection point because there are an infinit...
	We now show two corollaries: first, if the number of hard constraints is less than s(s+1)/2, then the Hessian is singular; and second, if the number of hard constraints is greater than s(s+1)/2 then the solution is inferior in the sense that  .
	Corollary 1: Let the number of hard constraints be less than s(s+1)/2.  Given Ω such that all Z are distinct, then the Hessian for any Ω that maximizes   will be singular.
	Proof:  Suppose that the number of hard constraints is (s(s+1)/2)-1.  Without loss of generality modify   so that  , that is, coordinate   is not constrained to be zero.  Denote this modified configuration as  .  There are an infinite number of Ω that...
	Corollary 2: Let the number of hard constraints be greater than s(s+1)/2.  Given Ω such that all Z are distinct, then the Ω that maximizes   will be less than   for a Z with (s+1)/2 hard constraints as in equation (A2).
	Proof:  Suppose that the number of hard constraints is (s(s+1)/2)+1.  Without loss of generality modify   so that an additional coordinate is constrained to be a constant; for example, let  .  Denote this modified configuration as  .  However this mod...
	In one dimension, setting one point to the origin results in two solutions with the same   values.  For purposes of characterizing the distributions of the parameters with MCMC methods, setting the sign -- a soft constraint -- on a second point (typic...

