smacofSym {smacof} | R Documentation |
Multidimensional scaling (stress minimization: SMACOF) on symmetric dissimilarity matrix.
smacofSym(delta, ndim = 2, type = c("ratio", "interval", "ordinal", "mspline"), weightmat = NULL, init = NULL, ties = "primary", verbose = FALSE, relax = FALSE, modulus = 1, itmax = 1000, eps = 1e-06, spline.degree = 2, spline.intKnots = 2)
delta |
Either a symmetric dissimilarity matrix or an object of class |
ndim |
Number of dimensions |
weightmat |
Optional matrix with dissimilarity weights |
init |
Matrix with starting values for configurations (optional) |
type |
MDS type: |
ties |
Tie specification for ordinal MDS only: |
verbose |
If |
relax |
If |
modulus |
Number of smacof iterations per monotone regression call |
itmax |
Maximum number of iterations |
eps |
Convergence criterion |
spline.degree |
Degree of the spline for |
spline.intKnots |
Number of interior knots of the spline for |
This is the simplest MDS-SMACOF version of the package. It solves the
stress target function for symmetric dissimiliby means of the
majorization approach (SMACOF) and reports the Stress-1 value
(normalized). The main output are the coordinates in the low-dimensional
space (configurations; conf
).
This function allows for fitting three basic types of MDS: ratio MDS
(default), interval MDS (polynomial transformation), and ordinal MDS
(aka nonmetric MDS).
It also returns the point stress, i.e. the larger the contribution of a
point to the total stress, the worse the fit (see also plot.smacof
.
delta |
Observed dissimilarities, not normalized |
obsdiss |
Observed dissimilarities, normalized |
confdiss |
Configuration dissimilarities |
conf |
Matrix of fitted configurations |
stress |
Stress-1 value for metric MDS |
spp |
Stress per point |
ndim |
Number of dimensions |
model |
Name of smacof model |
niter |
Number of iterations |
nobj |
Number of objects |
type |
Type of MDS model |
Jan de Leeuw and Patrick Mair
De Leeuw, J. & Mair, P. (2009). Multidimensional scaling using majorization: The R package smacof. Journal of Statistical Software, 31(3), 1-30, http://www.jstatsoft.org/v31/i03/
Borg, I., & Groenen, P. J. F. (2005). Modern Multidimensional Scaling (2nd ed.). Springer.
Borg, I., Groenen, P. J. F., & Mair, P. (2013). Applied Multidimensional Scaling. Springer.
smacofConstraint
, smacofRect
, smacofIndDiff
, smacofSphere
, plot.smacof
## simple SMACOF solution for kinship data data(kinshipdelta) res <- smacofSym(kinshipdelta) res summary(res) plot(res) plot(res, type = "p", label.conf = list(TRUE, 3, "darkgray"), pch = 25, col = "red") ## interval MDS res <- smacofSym(kinshipdelta, type = "interval") res ## 3D nonmetric SMACOF solution for trading data (secondary approach to ties) data(trading) res <- smacofSym(trading, ndim = 3, type = "ordinal", ties = "secondary") res