45-733 PROBABILITY AND STATISTICS I Practice Final
Probability and Statistics
Name__________________________
Spring 2000 Flex-Mode and Flex-Time 45-733
Practice Final
Keith Poole
(10 Points)
1. A random sample of 500 probable voters in California found that 275 preferred McCain to Bush. Use this sample to perform the hypothesis testÙ If (p - p0)/[p0(1 - p0)/n]1/2 > za/2 or Ù (p - p0)/[p0(1 - p0)/n]1/2 < -za/2 then Reject H0: Ù If -za/2 < (p - p0)/[p0(1 - p0)/n]1/2 < za/2 then Do Not Reject H0: Ù -z.025 = 1.96, p = 275/500 = .550 Test Statistic = (.550 - .5)/[(.5*.5)/500]1/2 = 2.236 > 1.96Hence, Reject H0:
Probability and Statistics
Name__________________________
Spring 2000 Flex-Mode and Flex-Time 45-733
Practice Final
Keith Poole
(10 Points)
2. We have two urns. In the first urn there are 10 white, 10 red, and 10 blue balls. In the second urn there are 5 white, 15 red, and 10 blue balls. We randomly draw one ball from each urn. What is the probability that neither ball is red?Probability and Statistics
Name__________________________
Spring 2000 Flex-Mode and Flex-Time 45-733
Practice Final
Keith Poole
(10 Points)
3. Suppose we have the discrete bivariate probability distribution:æ c(x2 + y2) x = 0, 1, 2 f(x,y) = ç y = -2, -1 è 0 otherwise
y -2 -1 --------- 0 | 4 1 | 5 | | x 1 | 5 2 | 7 | | 2 | 6 3 | 9 | | ----------- 15 6 | 21 Hence c = 1/21Find g2(y | x = 1).
æ 5/7 y = -2 ç g2(y | x=1) = f(1,y)/f1(1) = ç 2/7 y = -1 ç è 0 otherwise
Probability and Statistics
Name__________________________
Spring 2000 Flex-Mode and Flex-Time 45-733
Practice Final
Keith Poole
(10 Points)
4. Let X1, X2, ..., Xn be a random sample from a distribution with mean m and variance s2. What is the mean and variance of [(3X1)/2 + X2/2]?Probability and Statistics
Name__________________________
Spring 2000 Flex-Mode and Flex-Time 45-733
Practice Final
Keith Poole
(10 Points)
5. We wish to estimate the average life time of some custom lightbulbs in hours that have been shipped to our factory. Suppose the population standard deviation is known to be 30 hours. We take a random sample of 144 lightbulbs. What is the probability that the absolute difference between the sample mean and the true mean will not exceed 5 hours?_ _ P[|Xn - m| £ 5] = P[-5 £ Xn - m £ 5] = _ P[-5/(30/12) £ (Xn - m)/(30/12) £ 5/(30/12)] = P[-2 £ Z £ 2] = F(2) - F(-2) = .9544
Probability and Statistics
Name__________________________
Spring 2000 Flex-Mode and Flex-Time 45-733
Practice Final
Keith Poole
(10 Points)
6. Suppose X, Y have the continuous bivariate distribution:æ 2xy 0 < x < 1 f(x,y) = ç 0 < y < 1 è 0 otherwiseFind E(XY).
Probability and Statistics
Name__________________________
Spring 2000 Flex-Mode and Flex-Time 45-733
Practice Final
Keith Poole
(10 Points)
7. Suppose we read in Robber Barons that a public opinion poll shows that 60 percent of 60 randomly sampled GSIA MBA students think that Karl Freidrich Gauss is the lead singer in a heavy metal band. Compute 99 percent confidence limits for the true proportion of GSIA MBA students who think that Karl Friedrich Gauss is the lead singer of a heavy metal band.Confidence Limits are: Ù Ù Ù p ± za/2[p(1 - p)/n]1/2 Ù p = .60, z.005 = 2.58 .60 ± 2.58*[(.60*.40)/60]1/2 = .60 ± .06325 so the 99% limits are: (.53675, .66325)
Probability and Statistics
Name__________________________
Spring 2000 Flex-Mode and Flex-Time 45-733
Practice Final
Keith Poole
(10 Points)
8. Suppose that 35% of Pennsylvanians are Republicans, 45% are Democrats, and 20% are independents. A recent public opinion poll shows that 40% of Republicans, 20% of Democrats, and 90% of Independents plan on voting for John McCain. If a person is selected at random from the Pennsylvania population and it is found that she is not planning to vote for McCain, what is the probability that she is a Democrat?Probability and Statistics
Name__________________________
Spring 2000 Flex-Mode and Flex-Time 45-733
Practice Final
Keith Poole
(10 Points)
9. We take a random sample of potholes in Pittsburgh city streets and Cleveland city streets and measure the depth of each pothole. The measurements for Pittsburgh in centimeters are:115 101 119 151 162 99 159 138 188and the measurements for Cleveland in centimeters are:
135 131 109 167 143 89 199Assume that the depth of potholes in both cities is normally distributed. Test the null hypothesis that the variances of the two populations are the same against the alternative hypothesis that the variances are not the same (a = .01 ). Compute the P-Value of the test using EVIEWS.
Probability and Statistics
Name__________________________
Spring 2000 Flex-Mode and Flex-Time 45-733
Practice Final
Keith Poole
(10 Points)
10. Suppose the times that it takes for motorists to get through the toll booth area at the Monroeville exit to the Pennsylvania turnpike are independent random variables with a mean of 45 seconds and a standard deviation of 90 seconds. Approximate the probability that 100 motorists can get through the toll booth area in 80 minutes.Probability and Statistics
Name__________________________
Spring 2000 Flex-Mode and Flex-Time 45-733
Practice Final
Keith Poole
(5 Points)
11. The proportion of people having a certain type of cancer in a large population is known to be .008. We take a random sample of 1000 people from this population. What is the probability that at most 10 and at least 3 people have the cancer.Probability and Statistics
Name__________________________
Spring 2000 Flex-Mode and Flex-Time 45-733
Practice Final
Keith Poole
(10 Points)
12. We draw a random sample of size 41 from a normal distribution and we find that s2 = 943.8. Compute 95 and 99 percent confidence limits for s2.Probability and Statistics
Name__________________________
Spring 2000 Flex-Mode and Flex-Time 45-733
Practice Final
Keith Poole
(10 Points)
13. We have a spacecraft with 15 identical computers each of which operates independently of the others. The probability that any given computer will fail during a long space flight is .2. We take our spacecraft out for a long cruise to Venus. At some point in the flight at least 4 computers have failed. What is the probability that before the flight is over that at least 8 computers will have failed?Probability and Statistics
Name__________________________
Spring 2000 Flex-Mode and Flex-Time 45-733
Practice Final
Keith Poole
(10 Points)
14. Suppose we have the continuous probability distribution:æ (q + 4)x(q + 3) 0 < x < 1 f(x) = ç è 0 otherwiseFind the maximum likelihood estimator for q.
Ù Hence, q = -n/(åi=1,nlnxi) - 4