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LEAST SQUARES METRIC, UNIDIMENSIONAL SCALING OF
MULTIVARIATE LINEAR MODELS

KeitH T. PooLE

The squared error loss function for the unidimensional metric scaling problem has a special
geometry. It is possible to efficiently find the global minimum for every coordinate conditioned
on every other coordinate being held fixed. This approach is generalized to the case in which the
coordinates are polynomial functions of exogenous variables. The algorithms shown in the
paper are linear in the number of parameters. They always descend and, at convergence, every
coefficient of every polynomial is at its global minimum conditioned on every other parameter
being held fixed. Convergence is very rapid and Monte Carlo tests show the basic procedure
almost always converges to the overall global minimum.

Key words: city block scaling, metric unfolding, constrained coordinates.

1. Introduction

The purpose of this paper is to show a general solution for the metric unidimen-
sional similarities and unfolding problems when a squared error loss function is used.
The coordinates can be simple, as in ordinary scaling, or they can be polynomial
functions of exogenous variables, as in time series scaling. The basic approach is to
transform the loss function from a continuous form to a discrete form which can be
done by utilizing the ordering information of the coordinates. The key to the family of
algorithms developed below is that the combinatorial problem that results from trans-
forming the loss function can be conditionally solved by checking a small number of
possibilities. Consequently, the algorithms are linear in the number of parameters. At
every step the global minimum with respect to the parameter being estimated is found
3 conditioned on the remaining parameters being held fixed. At convergence, every pa-
e rameter is at its global minimum conditioned on all other parameters being held fixed.
This strong form of local minimum is very rare and, as the number of parameters
increases, Monte Carlo tests suggest that the likelihood of converging to the overall
global minimum increases. In large problems, the algorithms almost certainly reach the
_ overall global minimum.

- Section 2 shows the simple conditional global minimum algorithm and how it is
j applied to similarities and unfolding problems. Evidence is also presented regarding the
likelihood of the algorithm converging to the overall global minimum. Section 3 extends
the algorithm to cover city block scaling and scaling problems in which the coordinates
are polynomial functions of exogenous variables. Finally, section 4 presents a brief
empirical example of an exploratory time series unfolding analysis using interest group
ratings of members of the U.S. Congress. A proof that the algorithm always converges
to a conditional global minimum is presented in the Appendix.

b The anthor thanks [vo Molenaar, three anonymous referees, and Howard Rosenthal for their many
;lpf!;]_ comments. Requests for reprints should be sent to Keith T. Poole, Graduate School of Industrial
dministration, Carnegie-Mellon University, Pittsburgh, PA 15213.
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2. Simple Metric Unidimensional Scaling

2.1 The Similarities Problem

In the metric unidimensional similarities and unfolding problems, the data 3
assumed to be Euclidean distances plus some unknown observational error. If a sta
dard squared error loss function is used, it is well known that estimating the coordina:
consists of solving a combinatorial problem (Defays, 1978; Heiser, 1981; Hubert &
Arabie, 1986). To illustrate, let z; be the j-th (j = 1, . . . , g} stimulus coordinate, let §
be the ¢ length vector of coordinates, and let 47, be the observed distance betweeg
stimulus j and stimulus m. Given these definitions, the standard squared error losg
function for the metric unidimensional similarities problem is: *

3

n M-ﬂ

4q
=2 2 [ —dm)?
1 j=1m=1
where dj, = |2; = zp|. Let 8}, = +1if z; > z,,, and 8}, = ~1if z; < z,,,. The case g
zj = Z,, does not present a problem because de Leeuw (1984) has proven that at a locs 4
minimum d;,, = 0 only if dj'm = 0 (see Appendix). This allows d;,, to be written as J,,,(
= Z,). Substituting into (1): 4

n M-Q

SJ",‘,,d}"m +Zm — Zj)l.

Fv

The loss given by (2) is exactly equal to that computed in (1) provided that t
proper 6*’s are used. An important feature of (2) is that, given z, the loss is minimiz{§
by &*’s which are consistent with the ordering of the points. In other words, the lof
given by (2) is always greater than or equal to that given by (1) provided the d*'s
nonnegative. The case of negative d*'s will be taken up in section 3. P

Since (2) is quadratic in zj, the apparent solution is simply the centroid of the
+ 8hnd}y; that is, the estimated coordinate, z; is:

q
> (2m + 8%dl]

m=j

2 71
However, because the 8*'s are defined in terms of the ordering of the z;'s, a mini
must have the property that the 5*’s produce z;’s which reproduce the same 3%
(Defays, 1978). This is a purely combinatorial problem. To see this, let A* be the ¢ §

q skew symmetric matrix of s defined by the ordering relations of the 3 Z;'s, and felf
be the g by g skew symmetric matrix of &'s used to compute the 2;’s. Without loss}
generality, the centroid of the z's can be set equal to zero which allows the loss functi

to be written solely as a function of the ordering relations: k.
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Any arbitrarily chosen A induces a A* with the corresponding squared loss given
by (4). A minimum is defined as A = A*. In particular, note that when A = A*, the
second and third terms of (4) become

2
q
) Y Bmdlh
m=1
2 q

F=1

so that, subject to the constraint that A = A*, minimizing (4) is equivalent to maximizing
(5) (Defays, 1978; Heiser, 1981, p. 26).

Combinatorial optimization algorithms to find the global maximum of (5) are given
by Defays (1978, using a branch and bound approach) and by Hubert and Arabie (1986;
using a dynamic programming approach). Neither of these algorithms is linear in the
number of parameters and can be practically applied only in small problems {g = 20).
For example, with reference to (5), the Hubert and Arabie algorithm finds the maximum
of the sum of squares over the index m for each value of j. For each j this involves
checking every possible ¢ — 1 length vector 8;. When the optimal j is found, the
problem is not only reduced by one parameter, but it is also known that one set of points
is less than j and another set of points is greater than j (either set could be empty). Now,
because of his partitioning, for each of the remaining g — 1 j’s, every possible g — 2
length vector of &'s does not necessarily have to be checked. Consequently, although
the number of computations required to solve for the optimal permutation is not linear
in g, the algorithm does become computationally less burdensome as the order of
successive points is identified.

I now show a partial combinatorial algorithm which is linear in the number of
parameters. It converges to a solution in which every z; is at a global minimum con-
ditioned on every other point being held fixed. In addition, Monte Carlo testing suggests
that the likelihood of the algorithm converging to the overall global minimum A matrix
increases as q increases so that for large problems (g > 20), the algorithm is almost
certain to have converged to the global minimum A matrix.

The basic structure of the algorithm is simple: ¢ — 1 points are held fixed and a
solution for the g-th point is found. I work with the loss function given by (2) and solve
for the g-th point by using (3). By fixing ¢ — 1 points, there are only g possible patterns
of s corresponding to the possible spatial arrangements of the g points. (I will denote
a §* pattern as §* where 5* is ¢ — 1 length vector). It is a simple matter to try all g
possible & and select the one with the minimum loss. This process is illustrated in Figure
1.

Figure 1 displays a five point example where z; through z, are fixed and z5 is to be
estimated. Letters A through E denote the 5 possible regions that z5 could be located
in and the corresponding 5 patterns of &’s are shown in the middle of the figure. Note
that as z5 is “‘moved’” from one region to an adjacent one, only one 8 changes. Com-
Putationally, this makes the search very efficient as only one term in the coordinate
formula and in the loss function changes from one pattern to the next.

Note that, when all g possible & are tried, 8's are used in the loss formula, (2),
instead of §*'s. In terms of the definitions introduced above, this assumes that 8 = 8*
for each pattern. Qbviously, this will not always be true; there will exist 8, which when
used in (3), produces a coordinate such that & # 8*. However, when the d* are non-
negative, the § pattern with the minimum loss will reproduce itself; that is, 8 = 8*. To
see why this must be true, assume the opposite—that is, for & which produces the

o g
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Deita Patterns Produced By Locating Zs In Reglons A-E
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FIGURE 1

minimum loss, 8 # &8*, If § # 8*, using &* in (2) must reduce the loss becanse this . 3
the effect of changing the squared terms in (1} corresponding to the inconsistent 3 !-hg
from (d}, + d;,)* to (d}, — d;,)’. Now, suppose 8* is used to compute a né
coordinate in (3). Consider the loss equation, (2). Note that 2; is the centroid of ti§ 3

8mdlm + Zm. Consequently, the loss must again decrease when this new 2; is used§
(2). Hence, &* must produce a lower loss than &. This is a contradiction, hence & = 8

Note also that, geometrically, the z,, + 8%,d%, terms in (2) and (3) are si )
straight line equations. That is, the d}‘m are vectors with the corresponding z,, as ori 1"‘.
with directions given by the &},. By this interpretation, (2) is the sum of squar§
distances from the points given by the line equations to their centroid. :

Computationally, the algorithm proceeds as follows. First, the ¢ — 1 points i
rank-ordered. Second, the &8s are all set to +1—this corresponds to the assumption ti
the g-th point is to the right of the largest of the g — 1 points—and the loss, (2), a4
coordinate estimate, (3), are calculated and saved. Third, using the pattern in Fig
as an example, the g-th point is assumed to lie in region D which corresponds 10§
change of one & from +1 to —1. This process is continued until the g-th point is to §
left of the smallest point—region A in Figure 1. The loss and coordinate estimate for 4
current pattern of §’s can be gotten by one calculation using the values stored from
previous pattern. Because every possible pattern is checked in order, the result of i
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process is that the global minimum for the g-th z; is found conditioned on the remaining
points being held fixed.

Each point is estimated in a like manner. At convergence, the configuration can be
improved still further by checking the effect of interchanging every adjacent pair of
points {i.e., ¢ — 1 calculations). The algorithm is linear, it always descends, and at
convergence, every point is at a global minimum conditioned on every other point being
held fixed.

In contrast, simple gradient-type algorithms can be guaranteed to descend only to
minimums at which every point is at a local minimum conditioned on the remaining
points being held fixed. In this regard, these two types of local minima can be charac-
terized as ‘‘strong’’ and ‘‘weak’’ respectively. These terms are appropriate because, if
an ordinary (*‘weak’’) local minimum is used as a starting configuration, the algorithm
will descend to a conditional global (**strong™ local) minimum. Strong minima are a
subset of the weak minima and the unconditional (overall) global minimum is a subset
(of size one—although it is possible, but not probable, that two solutions could have an
identical loss) of the strong minima.

Because every point in a strong or conditional global minimum is at a global
minimum conditioned on the other points being held fixed, the ‘‘jointness’’ of the
constraints of the points on each other will increase geometrically with the number of
points. Consequently, a reasonable conjecture is that the number of conditional global
minimums should be a very small subset of the total number of minimums. In addition,
1 conjecture that as g increases the number of conditional global minimums as a per-
centage of the number of local minimums should decrease. For large values of g,
conditional global minimums should be very rare.

Extensive Monte Carlo testing of the algorithm (a portion of these tests are shown
in Table 1) suggests that there are two distinct classes of conditional global minimums.
One class can be described as interior—that is, if multiple points in the ‘‘true’” config-
uration are very close together, then, at high noise levels, several conditional global
minimums may result. The other class can be described as folded—that is, points from
the opposite ends of the configuration get placed next to one another. These two classes
are very distinct and the folded minima typically produce a squared error loss at least
twice as great as the interior minima.,

In practice, it is easy to get from a folded minimum to an interior minimum, When
the algorithm has converged to a conditional global minimum, a simple way to check if
it is a folded minimum is to rerun the algorithm on a subset of the points (e.g., the first
two-thirds, in rank order, from the estimated configuration). Then restart the algorithm
with the new estimates of the subset substituted in the original configuration. If the
original solution was folded, this process has the effect of ‘‘unfolding’™ one of the ends
of the configuration. In practice 1 checked configurations by using the first two-thirds
and second two-thirds. This procedure is linear in the number of points and almost
always converges to the overall (unconditional) global minimum from any starting
configuration.

Although any starting configuration can be used for the algorithm, excellent starts
are obtained by an Eckart-Young (1936, E-Y) decompasition of the double centered
distance matrix. For the 300 exhaustive-search experiments shown in Table 1, more
than one conditional global minimum was found in 170 of the experiments. Using E-Y
starts and the folding check procedure, the algorithms converged to the overall global
minimum in 168 of the 170 (98.8%) cases of multiple conditional global minimums and,
overall, 298 of the 300 experiments.

Table 1 shows the results of three different classes of experiments which utilized
three different types of configurations and two different types of error. The top portion
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of Table | shows the results of experiments in which the true configurations of points
were drawn randomly from a uniform distribution over [—.5, +.5]. The random error,
which was added to the corresponding true distances to produce the d*’s, was also
grawn from a uniform [-.5, +.5] distribution (in all cases, if a negative d* was pro-
duced, it was replaced with its absolute value). In the middle portion of Table 1 the true
configurations were drawn randomly from a uniform [—1, +1] distribution and the
random error was drawn from a normal distribution with mean d;,, and variable vari-
ance azdﬁ,,. Finally, in the bottom portion of Table 1 every true configuration is evenly
spaced over [—1, +1} and the error was drawn from a normal distribution with mean
dim and variable variance o*d ﬁn. The same level of random error was used throughout
all the experiments—the ratio of the standard deviation of the error to the standard
deviation of the true distances was held at approximately 1.0.

There are ¢'/2 possible unique A matrices for the simple unidimensional metric
similarities problem. This number is true assuming that the g by g matrix of d*’s does
not have any duplicate rows/columns so that the g points are distinct. For each value
of g from 6 to 9, 25 configurations were generated for each of the three types of
experiments described above and every g!/2 possible A matrix for each of the 23
configurations was checked in order to find every minimum, Table 1 shows, for each
value of g and the three general types of experiments, the average number of total
minimums, conditional global minimums, and interior conditional global minimums
found using the folding check procedure. For example, for ¢ = 9, an average of 8110.3
minimums were found for the model in which the points were drawn from a uniform
{~.5, +.5] distribution with uniform [—.5, +.5] error. An average of 3.6 conditional
global minimums and 1.2 interior conditional global minimums were found for the 25
experiments.

The proportion of minima that are conditional global is indeed very small (the
numbers in parentheses) and the proportion declines as g increases. The number of
conditional global minimums found tends to increase with g—however, the number
actually declined from g = 8 t0 g = 9 for the random points normal variable variance
experiments. More important however, is the pattern revealed in the evenly spaced
stimuli experiments where the results are more comparable across values of g. Al
though the number of conditional global minimums increases slowly with ¢, the number
of these that are interior conditional global minimums found with the folding check
procedure is stable as g increases (1.1). Finally, as noted above, if the E-Y starting
configuration is used, the global minimum is reached almost every time (the final col-
umn of the table).

To check the performance of the algorithm at larger values of ¢, 1000 randomly
generated starting configurations were used and the results compared with the solution
arrived at using the E-Y starting configuration with the folding check procedure. Ten
experiments were performed for each value of ¢ equal to 12, 14, 16, 18, 20, 25, 30, and
35 using evenly spaced points and normal variable-variance error at the same level as
above. Using E-Y starts with the folding check procedure, the algorithm reached the
minimum configuration found in the 1000 random starts in 79 of the 80 experiments. The
one failure occurred for ¢ = 35. However, in this one failure, the loss produced by the
E-Y solution differed from the minimum loss by only .001. This set of experiments was
repeated using random points and normal variable variance error and the global mini-
mum was reached in all 80 experiments.

_ In terms of iterations, with E-Y starts, the algorithm typically takes only 4 to 5
lterations (where an iteration consists of estimating each of the g points as described
above) to reach a conditional global minimum and, if the folding check procedure is
used, another 4 to 5 iterations. Using random starts adds about 2 iterations. The algo-
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rithm can easily be run on any small desk top computer for probiems up to size ¢ =

_ , only ¢
{depending upon the type of micro-computer, 2 to 10 minutes is typical). I have zps points:
lyzed problems up to g = 9750 (however, about 70% of the matrix was missing data) unfoldi
a Control Data CYBER 205 supercomputer (about 20,000 seconds were required), - ilanitiet

Missing data poses no problem for the algorithm. For example, suppose ‘ﬂz Gi
missing. When z; is estimated as described above, z; is not used, and vice versg (g2

Equations (1) through {4) could be reformulated in the manner of Heiser (198 1)——that within
let w,, = 0 if d* i 18 mlssmg, Wim = | otherwise, and multiply the squared error tersg Fi
by the correspondmg m S—but I will avoid doing so to simplify the presentation. multi
only limitation that mlssmg data imposes on the algorithm is a practlcal one; namel the
there should be at least two d}m’s for every z; (although I recommend using at least f O . .
to five). search

vecto

2.2 The Unfolding Problem 3 Carlo

Letx;betheith(i=1, ..., p) individual coordinate, p > g, let x be the p len ' f?l“"

vector of md:vndual coordmates and let d7; be the observed distance between mdl
uval i and stimulus j. Following the approach used above, define 6* +1if x; > z
8% = —1if x; < z;. The case of x; = z; does not present a problem because of
Leeuw s theorem (see Appendix). leen these definitions, the loss function is: '

P 4 ﬁ‘l
E Z df — xi + )% : |"
Because (5) is quadratic in x; and z; the apparent solutions are 3.1
p '’ 4 V
H extern
> [xi — 85d}) D sidy .
i=1 i=i : k !
pp=rii o — = - — 3
’ P P 3

q

P q q
> [z + 83d3] > 2 apdy X spdy
i= i=1j=1 i=1
& = =%- +

q pq q

where ¥ is the centroid of the x;.

the loss function, (6), to be rewritten as a function of the ordering relations:
2
P q q P
2 2 bydp X sydy X 8ydf

P 4 - ) ;
i=lj=1 J=1 i=1
= > | 8td% + - —
o -2 il IR pq q P

As with the similarities problem, any arbitrarily chosen A induces a A* with the ¢
responding loss given by (9). Again, a minimum occurs when A = A*,

The algorithm for solving for the x; and z; is basically the same as that descrl
for the similarities problem. However, the unfolding version is somewhat simplier. ¥
example, each x; is estimated with respect to the fixed set of z;. Consequently, there
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onlyg + 1 possible & corresponding to the possible spatial arrangements of the qz;
points and x;. Because the ¢ + 1 (p + 1) possible & are the same for each x;(z;), the
anfolding version of the algorithm is computationaily simplier. In contrast, in the sim-
larities version, the g possible 8 usually change as each z; is estimated.

Given that p > g, there are (p + q)!/2 possible orderings of the x; and z; but only
(q¥2)Xg + 1)P possible A matrices. This results from the lack of information about
within set orderings. For example, suppose p is large relative to g. As illustrated by
Figure 1, there are ¢ + 1 regions that each x; could be in. Accordingly, there will be
multiple x; in at least one region. Any permutation of the x; within that region produces
the same A matrix.

Because the number of A matrices is so large even for small p and g, an exhaustive
search for minima could not be performed. However, in Poole (1984) 1 developed a
vector interpretation of the algorithm outlined above and performed a large Monte
Carlo study of it. I found the algorithm to be very robust. It converged quickly to a
solution regardless of the level of error and was highly accurate in reproducing the
“true” coordinates even when purely random starting coordinates were used.

3. Complex Metric Unidimensional Scaling

This section shows how the conditional global minimum (CGM) algorithm outlined
above can be extended to cover two large classes of problems—city block similarities/
unfolding analyses; and scaling problems in which the coordinates are constrained to be
polynomial functions of exogenous variables.

3.1 City Block Scaling

To simplify the exposition, I will analyze the city block unfolding problem and
extend the results to the similarities problem where appropriate.
The loss function for the city block unfolding problem is

2
5

P
p=2 2 | df— 2l -zt . (10)
i=1j=1 k=1

where 5 is the number of dimensions. This would be a simple problem if the d*'s were
also indexed by dimension (i.e., d’&k). Each dimension could be estimated separately
using the CGM algorithm and the results simply added up. The layer of difficulty added
by (10) is to somehow ‘‘divide’’ the d*’s into s parts and estimate best fitting coordi-
nates using the CGM algorithm from the ‘‘divided’” d*’s.

More formally, let d j, be the ‘‘observed distance’’ on the k-th dimension such that

5 5
dj= 2 dje= 2 Skl —2p) + €y (1
k=1 k=1

where 8%, = +1if x > zj, 8fx = —1 if xi < zj, and &; is the unknown observation
error which is to be minimized. Let = 1, . . . , 5, be an alternative index over the

number of dimensions. Using these definitions, (10) can be rewritten into a form similar
to (6)

2

P 4 s
=2 2 | on|ds- > Skl — i) | — xa + oz
i=1j=1 kel
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p
=2 2 Opldy+ey) —xy + 7% 12)
i=1j=1

Note that, because the partition of d* into the s d~ terms is arbitrary, the s — 1 d™'g

can be set equal to the corresponding &*(x — z) for & # 1. This has the effect of loading
the unobserved error onto the I-th dimension. The crucial difference between (12) and

(6) is that the quantity dy + £; must itself be estimated and it can be negative (Hubert

& Arabie, 1988, p. 469). The presence of negative distances does not affect the basic
structure of the CGM algorithm provided the mean of the distances is positive. If there
are too many negative distances, then the best possible solution is a degenerate one—al]
the coordinates are equal to zero.

The presence of negative distances makes the algorithm computationally less ef-
ficient but still linear in the number of points. As explained above, the z + 8*d* or x +
&*d* terms in the loss expressions are straight line equations which define points. The
coordinate being estimated is simply the centroid of these points and the loss associated
with the & used to compute the points is the sum of the squared distances from the

points to their centroid. If 8 # 8*, the loss computed in this fashion is larger than the ™

actual loss computed directly as in (1). However, the minimum loss computed from (2)
or (6) has the property that 8 = §*. This technique breaks down if the d*’s can be
negative. In (2) and (6), the loss is reduced by using an inconsistent §* with a negative
d*. In short, with negative d*, the geometry breaks down. The centroid of the points
defined by the straight line equations is still the correct coordinate estimate, but now
the loss associated with the coordinate cannot be computed from (2) or (6).

Obtaining the loss directly as in (1), is computationally burdensome for large prob-
lems. For example, suppose x is held fixed and the z's are to be estimated with the
presence of some negative distances as in (12). First x must be rank ordered so that the
p + 1 possible & patterns can be produced. Second, & is initialized to +1. Third, each
of the p + 1 possible 2; are calculated using (7) and the loss (p calculations) for each is
computed, This approach is not linear in p.

This process can be made more efficient by working with a loss function which is,

so to speak, midway between (1) and (2). In particular, given z; from (7), the loss can
be written as

P

14
=2 = x =47 = 2 (df - 85(x; — )
i=1 i=1

I r p P »
=D dP+ X xF+p2f -2 2 8pdia +25 X 83dE -2 2 x;. (13)

i=1 i=1 i=1 i=1 i=1

where the &* are as defined above and 4* is used rather than &° + & (as in (12)) for
notational simplicity. Note that if & + & were used, the loss would be written as

#j—that is, the loss with respect to Z; on dimension /. The computational efficiency of

(13} stems from the fact that the various sums involving the §*'s can be calculated

separately from the 2;’s and the two can be ‘‘put together’ by a knowledge of what

regions vis a vis the x;’s (as in Figure 1) the 2;'s are in.

The calculations proceed as follows. First, x is rank ordered. Second, 8 is initial-
ized to +1 and the sum of squared d*’s, the sum of x;, the sum of d*x;, and sum of
squared x; are computed. Third, the p + | possible 2; and p + 1 possible sum of cross
product terms involving 8* are calculated. Because & is initialized to +1’s, the remain-
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ing p possible $.8*d* and 3.5*d*x; sums can be gotten one at a time by subtracting in the
order of the changes in sign of the 8;'s — 2d* and —2d*x; respectively from Zd* and
$4*x;. Fourth, the Z; are rank ordered. Fifth, the region vis a vis the x;’s for each 2; is
determined—which determines the appropriate 8*—and (13) can be calculated from the
stored sums. Because both the x;'s and 2;’s are rank ordered, it is a simple matter to
Jetermine the region 2; is in very quickly.

Because of the efficiency of widely available algorithms to sort real numbers, this
algorithm, in terms of CPU time, is linear in p. However, it takes twice as long as the
simple CGM algorithm which can be used when there are no negative distances. For
ease of exposition, I will refer to the negative distance conditional global minimum
algorithm as the NDCGM algorithm. As with the simple CGM algorithm, the NDCGM
algorithm always descends, and at convergence, every point is at a global minimum
conditioned on every other point being held fixed.

Given a partition of d"[-‘,- into the s dyy, then the NDCGM algorithm can be used to
estimate the x; and z;. That is, given a partition, the algorithm will always produce a
solution in which every coordinate is at a global minimum conditional on every other
coordinate being held fixed. The problem is that this will be true of every partition of
the &;. How then to partition the dy?

The method of partitioning that 1 will now describe is somewhat arbitrary but it
works well in practice. To begin, all coordinates are initialized to zero and the d*’s are
divided by s to obtain target distances for the estimate of the first dimension coordi-
nates; that is dy; = d}i/s. The NDCGM algorithm is then applied to these &~ and first
estimates of the z; and x;; are obtained. If s = 2, then I set dj = dh — &1 — 1], and
if s = 3 then I set djp = d§/ (s = 1) — |%;1 — 2;;|. The NDCGM algorithm is then applied
to these d° and first estimates of the z;; and x;; are obtained. In general, on the first
iteration, if 1 < I = s, then

a3 -1
diy = ———— — R — Zalk
ijt (S+1—l) k§|| ik jk

On subsequent iterations, if 1 = =< s, then

5
dy =df - 2 |&u = 2al.
Kl

This procedure always converges to a solution for which the sum of squared error is the
same for each dimension. That is, with respect to (12)

H1 = M2 = 000 = My

I‘fote that the fact that the sum of squared error is the same with respect to the parti-
tioning of the d*'s does not mean that the variance of the estimated coordinates is the
Same on each dimension.

Where the procedure departs from more traditional scaling methods is that the
'"f-_l"ing coordinates for each dimension during every iteration are set to zero. 1 impose
this constraint because the target distances for any dimension which are analyzed by
the NDCGM algorithm change at each iteration. In traditional scaling methods either
the target distances remain constant throughout the iterative process or, as in Kruskal’s
(1964a, 1964b) algorithm, the target distances are altered in such a way that the sum of
squared error decreases. In either case, it is appropriate to use the coordinates esti-
mated during the previous iteration to begin the current iteration. Here, neither con-
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dition holds and the rationale is absent. I tried using previously estimated coordinate,
as starts for the current iteration and [ found that they did not perform as well as alway
starting the NDCGM algorithm from the coordinates all at zero. _

Table 2 shows a representative portion of a larger Monte Carlo study of the ¢j
block scaling method just outlined. The table is divided into two parts—the upper ha
reports experiments using eight different configurations of points for similarities datg
and the lower half reports experiments using eight different configuration of points fa
unfolding data. The coordinates for the experiments were drawn randomly from
uniform [—.5, +.5] distribution and the d*'s were generated by adding uniform [~
+.5] random error to the ds. If this produced a negative value for d*, the absolute valy
was used. '

As in the experiments shown in Table I, the level of error was measured by th
ratio of the standard deviation of the introduced error to the standard deviation of th
true distances. Table 2 displays three different levels of error—zero, and standa
deviation ratios of .45 and .85. Kruskal’s Stress Formula 1 was used to measure th
recovery of the d*’s and the recovery of the true coordinates was measured by th
Pearson r-square. A separate r-square is shown for each dimension. Each entry in th
table is the average for 10 simulations under the indicated conditions. Standard de
ations are in parentheses.

The primary message of Table 2 is that the data requirements for city block
are clearly much greater than standard Euclidean scaling. Reliable results at high leve
of error for similarities data in two dimensions are obtained when the number of stim
is greater than or equal to 20 and for three dimensions, it appears that at least 30 stim
are required. At high levels of error for unfolding problems, at least 15 stimuli
required for reliable estimates in two dimensions and at least 25 are required for thre
dimensions. ‘

3.2 Scaling With Constrained Coordinates

This section shows how the CGM algorithm can be extended to scaling problems3
in which the coordinates are constrained to be polynomial functions of exogeno
variables. For example, suppose ¥ is a p by n matrix where the # columns of ¥
measures of specific characteristics of p individuals—personal income, social clas
race, sex, political party affiliation, and so on. Suppose further that we have the in
viduals® preferences for a set of stimuli and that we believe that these preferences a
determined by the specific characteristics. This model is championed by economists
the *‘Chicago school’’. They believe that if the economic interests can be proper
defined and measured then these variables will account for individual preferences (e.8.,3
voling in legislatures—see Peltzman, 1984).

Given this theory of behavior, an appropriate model of the individual coordinat
is

Xi=x1¥a tx2¥nt o+ xatin, (1

where the x's are the coefficients to be estimated. The squared error loss function for
this problem is E:

2

P q P g9 n A
p=> 2 @i—-dp?=2 2 |ldt-| 2 ¥mxm—-z| |- (15):3
i=1j=1

i=1j=1 m=1

In this form, there are ¢ + n parameters to be estimated—the ¢ z's and n x's. Given .
an estimate of the coefficient vector, x, by holding x fixed each z; can be estlmated::

.
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TABLE 2

MONTE CARLO RESULTS
SIMILARITIES DATA

SDRATIQ=.45
Recovery of
(- L] Coordinates

Ate 641 588 447
(.020) (.232) (253} (.299)

.isa 850 800 .797
(0233 (17521 (195) 19D

461 963 935 921
(016) (04N L3N LIT7Y

67 974 950 949
(019 LO13) (.0B4) (,099)

168 856 .782
LOA3} CIINL2ID)

183 925 885
(.032) (.087) (.169)

A74 991 990
(0073 (.002) (.002)

181 993 993
(.005 (.002) (.002)

URFOLDING DATA

Tl 641 632 629
(01114259 1632 L. 313)

147 N7 681 548
(.024)(.189) {.201) (.26}

A48 831 817 745
o 1230150 (213

152 .B¥S 792 776
(019) {108 Li91) (314

192 888 848
(.03%5) (.097) 1.225)

184 967 967
(01130014 (016)

170 961 930
(.015) (.040) (.054)

76 980 875
(014) L0113 L007)

*Entries are mean STRESS values. Standard deviations are in parentheses.
*Entries are mean Pearson r-square values. Standard deviations are in parentheses.
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SDRATIO=.85
Recovery of
gn Coordinates

189 664 577 .492
(.028) (.204) (.202) (.278)

253 783 663 .583
1.025) (.119) (.223) (276}

276 814 803 .787
(023 L192) L1811 (261)

286 926 9086 .894
(oI (029 (1212 (109)
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(.046) (.230) (340}

322 838 149
(03N OB (249

J33 952 945
(014 {.016) (016}

348 967 966
4.009) (O LOVD)

257 .545 464 438
(010} (2253 .230) (.299)

283 644 543 542
o2 (211 (247 (180)

252 701 600 596
o110 (23100261

226 7 728 620
(018)(.140) (2011 (238

327 T46 640
LO21) (1322 (2200

343 810 799
(0243 L137) (1 8Y)

Je 792 734
1.023) (.196) (191}

338 918 801
€.02%) (037 (236}
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using the simple CGM aigorithm. The z;’s are independent of each other in terms of the
i estimation—that is, when a particular z; is estimated, the remaining ¢ — 1 z’s play no .3
! role in the estimation. In contrast, each y is estimated by holding z and the remaining %

n — 1 x's fixed. This is done as follows. Assume that # — 1 y are known, then the 2

corresponding # — 1 4, x,, terms can be combined with z; and treated as a point.
Specifically, let ¢ index the y that is to be estimated and define

Yijr = % — Z d’r’me

m#t

dy'—"

T M=

Wim X m =z = Yax: — Y |-
1
Now, let 87 = +1if ¢y x, > yy, and 8% =
loss function, (15), to0 be rewritten as

—Lif iy <y Thése definitions allow the

P q %
. p=2 2 Ghdh+ vy — axdh, (16)
i=1j=1

and the solution for y, is

P q
i

g 2| a2 (8hdl+ i)

i=1 j=1

%o = L an
P

q 2 vk

i=1

With Figure 1 I illustrated the simple geometry that underlies the CGM algorithm
In the simple unfolding problem, when the g z; are held fixed, there are only g + 1
regions x; could be in. Corresponding to these g + 1 possibilities are g + 1 & patterns
and one of these & generates the conditional giobal minimum. The “‘target’ x; can be
thought of as first being in region E of Figure 1—producing a 8 of all plus ones-—and
then being ‘*'moved’’ to region D—producing a pattern of —1, +1, +1 , +1—and ;
so on until it is *‘moved’’ to region A and produces a & of minus ones. The key to the
simplicity of the algorithm is the fact that the order of the changes in sign of the 8§'s is -
; the same as the order of the regions. Thus when the & vectors are displayed in matrix ¥
% form as in Figure 1 they form a perfect Guttman scale pattern—that is, the lower leﬁ
' triangle consists of minus ones and the upper right triangle consists of plus ones. .-;
This simplicity of structure does not occur with (16) and (17). Although there is
only one parameter, y,, being estimated, there are in fact p ‘‘targets” because y; is -
multiplied by the p ¢;’'s and it is the product, ¥, x, which, of necessity, defines the
ordering relations vis a vis the y;,. In this context, although there are pq y;, points, each
target is being “‘moved’’ vis a vis only g of the points and generates g 8§ s—specifically, -
i x; generates 84, 82y, . - . » 8. Consequently each & pattern has length pg—q¥&'s
for each of the p targets—and there are pg + | possible 8 patterns corresponding to the -
pq + 1 regions defined by the pg yy.

Because the ;, are constants that can be negative or positive, the initial 8 pattern
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may not be all plus ones. The initial pattern can be obtained by assuming that y, is a

very large positive number such that for every ¥ > 0, Y x, is greater than the largest
., and for every ¥, <0, ¥, x, is smaller than the smallest y ;. In short, the p *‘targets”’

can be divided into two groups corresponding to the signs of the y; and the initial

consists of +1's and —1’s in direct correspondence to the signs of the 4. Now, if ¢,

= 0, then the target, so to speak, never “‘moves’”. In this case a direct inspection of (16)

shows that the loss will be minimized if 8; = —1 when y; > 0, and if §;; = +1 when
. < 0. The 8;’s corresponding to y;,’s equal to zero remain fixed throughout.

Given the initial & pattern, the order of the changes in sign of the §'s must be
determined. The initial pattern was determined by letting x, be a very large positive
number. Now consider what happens when x, is slowly reduced in magnitude. For
some value of y, it will be the case that for a particular ¢ and v, ¢y x, = ¥i» and the
corresponding 8; must be the first one to change in sign. In other words, the &
corresponding to the largest y;;,/y;, ratio is the first one to change in sign. The order of
the changes in sign of the §'s is obtained by rank ordering the pq y;,/4; ratios. As
explained above, if ¢;; = 0, then the corresponding 8y, never changes sign and the ratio
need not be formed.

Given the initial 8 and the ordering information for the sign changes, the calcula-
tions are now very similar to those performed in the simple CGM algorithm. In partic-
ular, only one calculation is needed to obtain the new estimate of x, from (17). The loss
function can be expanded out as in (13) and only two cross product terms-—=a&d*y and
8d*i—have to be changed. If the d* are nonnegative, then, for the & with the minimum
loss, & = &*. If some of the d*’s are negative, the NDCGM algorithm can be used as a
subroutine. In either case, because all possible & patterns are checked, the global
minimum for y, is found conditioned on all the remaining x's being held fixed. The
algorithm is linear in the number of parameters. In addition, the algorithm always
descends, and at convergence, every y, is at its global minimum conditioned on the
remainder being held fixed. I will refer to this algorithm as the polynomial coefficient
conditional global minimum (PCCGM) algorithm.

In summary, the calculations of the PCCGM algorithm proceed as follows, First,
the y;;;, the sums of squared d*’s, y,’s, i, "s and their appropriate cross products which
appear in (16) and (17), are computed; and & is initialized according to the signs of the
¥’s. Second, the pg (minus the number of y;, equal to zero) y, /v, ratios are rank
ordered to determine the order of the changes in sign of the initialized 8. Third, in order,
change one 8; at a time, update and store %, from (16), and use the new j, to calculate
the loss in (15).

The PCCGM algorithm can also be used with similarities problems. Suppose d7; is
the judged similarity between stimulus j and stimulus / by the i-th individual and [T s a
g by n matrix where the n columns of Il are measures of specific characteristics of the
stimuli. For example, in marketing a researcher may gather the judged similarities
between a set of g products by p individuals and wish to test whether or not the
similarity judgements are based upon objectively measured characteristic of the stim-
uli—e.g., sweetness, texture, color, etc. An individual differences approach to this
problem is to define

i=Xa®Tp T Xawezt 0t Xin T,

which, for the i-th individual, produces the loss function

q q n
m= 2 Z df — Z (ﬂjm = W)X im
ji=11i=1 =1
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The PCCGM algorithm can then be used to estimate the x vector for each individuah‘

3.3 Time Series Scaling

This section shows how the PCCGM algorithm can be extended to scaling proh.
lems in which preferences/similarities are gathered over time—~that is, three way typé
data problems (e.g., Carroll, Pruzansky, & Kruskal, 1980; DeSarbo & Carroll, 1984),
For example, suppose p individuals report their preferences for g stimuli at r different
times so that r distinct p by g matrices of preferential choice data are produced. Stat
in its simplest form, the time series problem is: Can the coordinates of a stimuluy
individual be assumed to be systematically related over time. If the answer is no, then,
in the unidimensional unfolding context, {p + ¢) parameters must be estimated—the
x;’s and z;’s for each of the r matrices. In order to answer yes, the researcher must state
an explicit theory of behavior which “‘links’’ the coordinates together over time.

An example of such a theory of behavior is the *‘Chicago schoo!l’ model used
above. Suppose ¥, is the p by n matrix of economic characteristics at time ¢. Many of
these economic characteristics will change over time—for example, personal incomé—. 338
and this can be the only source of change of individual behavior. Given this theory of, _
behaviar, an appropriate model of an individual's coordinates at time ¢ is - 4

Xig = X1 T XeWae + 0 F X Wine- (18)

If the stimuli are such that they can be considered to be fixed through time, then
the loss function for this problem is

2

The number of parameters to be estimated is the same as that for (15}~ z; and the »
x's. The stimuli do not have to be constant through time. The stimuli can be functions
of exogenous variables similar to (18). However, such a model must be founded ona
model of behavior of the stimuli. In any case, the PCCGM algorithm can estimate the
coefficients.

The "*Chicago school” model is very restrictive and not appropriate in many
circumstances. A less restrictive—albeit atheoretical-——mode! of time series unfolding/:3
similarities data is to assume that individual/stimuli coordinates are polynomial func
tions of time. This is a very useful exploratory technique. It is both flexible and re- 4
strictive. It is flexible in that the order of the polynomiai function can be adjusted to-3
accomodate a large class of systematic movements over time. It is restrictive in that the
number of estimated parameters is typically much less than the number generated by
performing separate yearly scalings. In particular, individual i’s coordinate at time £ i

Xi = Xio ¥ Xia¥n * xpbat 20+ Xin, Yo, (20)

where m = 0, 1, ..., n; is the degree of the polynomial. 1 index n by individual
because, empmcally, the data will limit the number of terms that can be estimated— 3
some individuals will be in a time series longer than others. This formulation allows & -
variety of representations of time; ordinary time, the log of time, Legendre polynomx—
als, and so on. For example, using integers to denote the time periods t =1, . . ., r, ¥n .
=, p = tz, Yy = ¥, and so on. The first three terms of a Legendre polynomi
representation of time are
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2
¢,1=—1+(r—1)~‘:—1 fore=1,...r

3ph— 1
o = _—2_“'
Syrh — 3ba
V= —

I prefer Legendre polynomials for the time terms because they are orthogonal on
the interval [—1, + 1). This property allows as much variance as possible to be picked
up by the constant term (x;p) before the linear term (x;) is estimated, and so on (Hinich
& Roll, 1981). This orthogonality property makes them ideal for exploratory data anal-
ysis. In particular, the coefficients are comparable across individuals in empirical ap-

plications.
The counterpart to (20) for a stimulus coordinate at time ¢ is
eory of
i =Llp+Epa tipbat o + Ljn Yin; - 20
Letl=0,1,...,ntobe an alternative index of the polynomial degree and let it

(18)
denote the y or { coefficient being estimated. To perform a time series unfolding using

e, then B (20) and (21), define

i

ni
v = & emlim = 2 YimXim»

m=90 m#l

(19)
s0 that

d the n-
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«d on a
ate the

ni n;
d;’fr = |xi: - thl = 2 P Xim — 2 Gimlim | = ]ﬂbrlXﬂ‘ - )’ijrr],

m=10 m=90

where, for completeness, let o = 1. I left g0 out of (20) and (21) to simplify the
presentation. Now, let 8y = +1if Yuxi > Yyu and 85y = —1if ¥y xu < Yju- This allows

many X ;
the loss function to be written as
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| func-
nd re-
ited to
1at the
ted by
netis

p a4 f
p= > 2 (8ludh + v — baxa), (22)
i=1j=1t=1

and the solution for y; is

r q
E Yy 2 (8Fadl + Yiu)
. =1 j=1 . (23)
g 2 ¥

t=1

(20)
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rs Py i The steps of the PCCGM algorithm are the same as those described above only
omial ;- here the ordering information is obtained from the pr ratios ¥/ and the & patierns

are of length pr. When the {'s are being estimated, the corresponding & patterns are of
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length gr. Note that when the constant terms, x;y and ), are being estimated, the ratjg
are simply the corresponding y;,;'s (because ¢y = 1} so that the estimation steps if
equivalent to the simple CGM algerithm. The simple CGM algorithm is a special cag
of the PCCGM algorithm which occéurs when a column of ¥ is all ones. i,

Techmcally, the PCCGM algorithm can be implemented without starting valueg [:-
the x's and {"s—that is, they can all be set equal to zero as in the NDCGM algorithg
Asa practical matter, however, it i%faetter to have starting estimates of either the y, {
or z;'s—one of the nice features of the PCCGM algorithm is that only starting estimagg
for one set of points are needed to begin the iterative process. In practice, a strajg g
forward way to obtain estimates of the z;’s is to perform an Eckart-Young (]9
decomposition of the double centered average distance matrix; that is, the p by ¢ matg
of the average distances over the r time periods. This approach produces starting valy
which are the same for every time period; that is, 2; = p forr=1, ..., r. Thesedf
held fixed and the PCCGM algorithm is used to estimate each coeﬂiment of each x“
ascending order—y;o then x; then y;, and so on. The estimated value for y;, is useg
as shown above, to form the y;, used in the estimation of x;;, then x,o and x;, are ug
to estimate y;», and so on. The resultant x;,'s are held fixed and the coefficients for
zj,'s are estimated in the same fashion. This completes an iteration. The sum of squar§
error always declines at every phase of this process. This implementation of ‘
PCCGM algorithm was used in the empirical appllcatlon shown below. i

To illustrate the exploratory Legendre time series technique using the PCC Gl
algorithm, an analysis of 21 yearly matrices of interest group ratings of members of §
U.S. Congress is shown in section 4 and a Monte Carlo analysis of artificial data whi
exactly duplicates the structure of the interest group data is shown in section 5. §j
cifically, not every interest group and member of Congress was present in every yeil
The artificial individuals/stimuli will be in the time series in exactly the same patternd
their real counterparts. The aim of the Monte Carlo study is to check the reliability#
the estimates of the coordinates under a variety of possible error conditions. Beca
an extensive set of Monte Carlo tests of the simple CGM algorithm (i.e., when n ={
is shown in Poole (1984), the Monte Carlo tests of the PCCGM algonthm will-§
confined to the linear (n = 1) and cubic (n = 3) models respectively. 1

4. An Application of the PCCGM Algorithm to Interest Group Ratings of Co
1959-1981

Every year a wide variety of interest groups issue ratings of the members:
Congress. A rating is an agreement score between the member and the stated positidl
of the interest group. To rate a member of Congress, an interest group normally seled
10 to 50 roll call votes and computes the percentage of “‘correct’” votes by the membe

The ratings can be regarded as preference data——the higher the rating, the more {§
group prefers the member. In terms of a geometric model, the higher the rating t8
smaller the distance between the member and the interest group on the underly™
evaluative dimensions. Accordingly, the ratings were converted to distances by appy
ing the linear transformation

100 — Ry

=5

= dul + ity
where Ry, is the rating of the i-th member by the j-th interest group at time #. 4
division by 50 is simply a convenient scaling factor—it produces @*’s which range 1 .
0 to 2 so that the recovered space ranges from approximately —1 to +1. A
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developed spatial model of the ratings and issues relating to (24) are discussed in detail
in Poole and Daniels (1985).

There is substantial evidence that members of Congress vote consistently over
long periods of time. Voting histories are very important and members pay close at-
tention to how they voted in the past when deciding to vote (Asher & Weisberg, 1978;
Clausen, 1973; Fenno, 1978; Fiorina, 1974). Because the ratings are based on the roll
calls, it should be the case that the members’ positions over time will be approximated
by low order polynomials. Interest groups on the other hand, should be more stable
than the members because of the relative narrowness of their policy concerns.

A total of 203,387 ratings were issued by 59 interest groups over the 1959-1981
period. However, 14 of the 59 are not really ‘‘groups”, rather they represent various
ratings compiled by Congressional Quarterly—these are primarily the well known Con-
servative Coalition and Presidential Support scores.

Very few of the interest groups are in the dataset for the entire 23 year period. The
number of interest groups issuing rating ranged from a low of 8 in 1959 and 1960 to a
high of 37 in 1979 (a complete listing of the groups is available from the author on
request). If all 59 groups had issued ratings for all 23 years then the total number of
ratings would be 725,995 (59 x 23 x 535). Given that the actual number of ratings is
203,387, this means that about 72% of the data is ‘‘missing’.

A total of 261 senators and 1258 representatives are represented in the dataset.
Consequently, p = 1519, g = 59, r = 23, and the model is estimated forn = 0, 1, 2, 3.
Because of the size of the dataset and the need to do extensive Monte-Carlo work to
verify the results of the estimation procedure, the program was implemented on a
Control Data Cyber 205 supercomputer. A typical estimation takes 300 to 450 seconds
depending upon n. The results of the estimations are displayed in Table 3.

Table 3

Unidimensional Time-Series Unfolding Results

Degree of Pearson Total Parameters

Polynomial r-square Paragmeters Added
Constant 0 .740 1578 ceam
Linear 1 .765 - 2836 1258
Quadratic 2 L1768 3957 1121
Cubic 3 .782 4954 997

Although it is the squared error that is being minimized, I use the Pearson r-square
computed between the transformed ratings (the d’a-,’s) and the distances produced from
the estimated coordinates as a measure of fit because it is easily interpretable. The
r-square for the “‘constant’’ model (» = 0) in which legislators and interest groups are
constrained to have the same coordinate in every year is .740. In contrast, the average
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Table 4

Magnitude of Annual Change in Spatial Coordinate Given by Estimated Linear
Trend Parameters

Group In Sample 3 to 9 Years In Sample 10 to 23 Years é
Standard Standard 5
Averageff  Deviation Number Average Deviation Number '8
Interest Groups - ,0301 .0368 27+ .0150 .0293 15
(129)* : (231)
Senators .0290 .0357 103 L0171 L0174 110
(543) (1690)
Representatives ,0313 .0385 591 .0194 .0181 414
(3287) (6267)
Legislators E
Entering Congrass E
After 1959
Senators .0266 .0340 81 .0205 .0200 42
(436) (600)
Representativas .0282 .0329 423 .0184 L0177 215
(2369) (3031)

*The numbers in parentheses are the total observations; that is, the number in the*
indicated group times the number of years.

B

#average annual change in spatial coordinate.

of the r-squares of the separate yearly unfoldings is .807. As indicated in the table, the:3J
number of parameters estimated in the constant model is 1578 (i.e., p + g) while the g
number for the separate yearly unfoldings is 12,650. The increase of .067 in r-square is4
purchased at the price of 11,072 parameters.

In contrast, to move from the constant model to the linear (n = 1), quadratic {n =-f,
2), and cubic (n = 3) models requires far fewer parameters. A linear term was estimated §
for every legislator with 3 or more years of interest group data. The figures for the{
guadratic and cubic terms were 4 and 5 years respectively. In terms of years, the ¥
requirements were set as low as possible to give the benefit of doubt to the higher order. §
models. Note, however, that the ratio of parameters (x’s or {s) to ratings (d},'s) is-3
always large. That is, if a linear polynomial is fitted to a legislator who is only in the-'§
time series for three years the number of ratings is equal to the sum of the three years.g
worth of interest groups. The smallest this number can be is 27—the sum of the ¢’s §
associated with 1959, 60, and 61. The corresponding minimum numbers for the qua-%§
dratic and cubic models are 37 and 48 respectively. Thus, although there is enough data §
to estimate the parameters reliably, fitting an n degree polynomial to n + 1 years does 4
not satisfactorily address the behavioral question (is the individual/stimulus really mov-
ing through time in this way?).

On its face, the increase of .02 in the r-square from the constant to the linear 4
model appears significant even though the number of parameters is increased by 1261.
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bDistribution of the "Constant" Coordinates
for the
Members of Congress 1959-1981

D = Democrat
R = Republican

LIBERAL D
ADAX D

Kennedy, E RDDDDDDDDDDDDDDDDDDD
COPER /Mondale, W RODDDDDDODEDDDDDDDDDCDDDDDRDNDDDEDDCDDDDDEDDDENDDDDDDODIDDODDDDDDNDODDDDDDDD

NFU* /Humphrey, H pODDDDDDDDDDDDDDDDDDDDDDDPDDDODDDODDDDDDDDDDDRDDCDODDDDDILDODDDDDRDDDD

Carter RRDDDDDOODDODDDODDTDDDDDDDADDDDCODDDEODDIDDDDDDDDDRDDDDDDDDDODDREDDEDRDDDIDDD
ARRRRODDDDDDDDODDDI DD DO DDDDDRDLNDDNDDEN DD DRODD DD RO DODDNDDEDO SN DDODDDDDDD
RRRRRODDODDDDDDDDNEDDDDDDDODDRDDDODRDDRDDDDEODDDDDDDD

Kennedy RODDOOODODORDDDDDDDDDDODDDDSPREDIDDDODODEDDDDD DODRSDEDDDDEDDEDDD

Johnaon poDDDDDDDDDDPODDDDDDDDDODDDDDDD
ARRRRDDDDOODDDDDDDDRDDDDDDDDDD
RARDDDDDODDDDDDDDODDODDDDDD
RRRRRRADDDDDDDDDDDDDDDDDNDDDODDDDDD
RRRRRRRARRDDDDDDDDDDDDDDDDDDDDDDD
RRRRRRDDDDDDD

Packwood, R RRRRRRRRRDODDDDODDODODDODD

RARRRARRRODODD
RARRARRRARRRRODDDDDEDDDODD

RRRRRRRRRRRRRRARDDDDDDODDDDCDD
RRRARRAARRRRRARDDDODDDDDODDDOLDODD
Eisenhower RRRRRRRRRRRARARRARDDDDDDODDD
RRRRRRARRRRARRARARRRODDORDDDDD
Nixon ARRARRARARARRRARRRRRODODODDDDDDD
Baker, H RRRARARARRRRRRARRRAARRRRARRRARRADDDODDDDDDODDDDDODDDDD
Dole, R RRARRAARARRRRRARRRRRARRARRRRARRRRRDODRDDDDDNDDDDDRDDD
RRRARARARRRRRRARRAARARRARRARARRRRRAARARDDDDDDDODDDDDDDDDDO

DDDODDDDDODDNDODRDDD

Goldwater,B
FordReagan
Helms, J
CV* [ACU™

GONSERVATIVE ERRD

*Interest Groups: (ADA)

Americansg for Democratic Action

(COPE} Committee on Political Education AFLCIO
(NFU) National Farmers Union

{cv) Christian Vote

(ACU) American Conservarive Uniom

FIGURE 2

However, when viewed at the level of the individual legislator rather than the aggre-
gate, tpe linear results appear less significant. Table 4 displays the mean and standard
devnatlpn of the absolute value of the yearly change in position implied by the linear
coefficients. The table shows the results for those legislators and interest groups in the
da§a§et for less than 10 years and those in the dataset 10 or more years. The results are
striking. The legislators and groups in the dataset for shorter periods of time had
substantially greater average yearly movements and the standard deviations of these
average yearly movements are larger as well. Over short periods of time, the linear
trend appears to be fitting noise rather than genuine trend. Over longer periods of time
the interest groups, as expected, are more stable than the legislators—but not by much.
The results presented in the top portion on Table 4 are contaminated by the fact
that many members of Congress were approaching the end of their careers in 1959 so
that they are really not ‘‘short period’’ members, Consequently, in the bottom haif of
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Table 4, the calculations are redone using only those members who began their se
after 1959. The results are robust to this modification. 3
The dimension recovered from the interest group data is the liberal/conservatjll
continuum familiar to students of politics (Kritzer, 1978; Poole, 1981; Poole S =~ = i
Rosenthal, 1986). Figure 2 shows the distribution of the constant coordinates for {RlE.
legisiators over the dimension. For reference, the locations of a number of well-kngwl
political figures and interest groups are indicated. On the whole, the interest groyd Maan
tend to be more extreme than the legislators. The presidents, however, tend to . rod
located more towards the medians of their respective political parties. : ' w

5. Monte Carlo Tests

To perform the Monte Carlo tests I exactly duplicated the missing data pattern ap
coordinate structure of the 261 senators and the interest groups that rated them (
total number of ratings for the senators was 38,094). (The tests were limited to
senatorial dataset to make the Monte Carlo work more practical in terms of comput}
resources.) Thus, if a senator was in the data from 1973-78, then his /her amﬁ
counterpart was in the data for the same period. -

The polynomial coefficients for the linear and cubic models were randomly ge
ated by drawing them from a normal distribution with mean zero and variance of off
As with the actual data, if a senator or interest group was in the dataset for 3 or my
years, a linear polynomial was estimated; if the period was 5 or more years, the cuf§
polynomial was estimated. The d;,’s corresponding to the R;;,'s in the real data wel
computed from the artificially generated x;’s and z;,’s, random error added, and {
resulting d,'s were converted into ratings using the inverse of the transformati§
shown in (24). If the addition of the error produced a negative d* it was truncated]
zero. Similarly, if the inverse transformation produced a negative rating, it was trj
cated to zero. The Ry,’s were then fed into the program which produced the emp %
results discussed in section 4. :

Three types of random error were used in the Monte Carlo tests: normal with meg
equal to the true distance dy; with constant variance o?; normal with mean difr
variable variance of O'Zdu,, and log normal with mean log (d,j,) with constant variag
o*. The log normal model is the most realistic because of its positive skewness (R
say, 1977). Ten runs were made at three error levels for each model. The resu]ts
shown in Table 5, ]

The entries in Table 5 are the mean Pearson r-squares for the ten runs in f
category. The standard deviations are shown in parentheses. The level of e
measured as the ratio of the standard deviation of the ey, to the standard deviatiom])
the dj;. Under the Distances heading of the table the r-squares are computed betwe
the 4*’s and the d’s computed from the estimated coordinates. Under the Coordinal§
heading the r-squares are computed between the true x;'s/z;’s and their estimaf
counterparts. The number of R;,’s was 38,094 and the total number of coordinate:
2684 ((261 + 59) x 23 — missing).

Each level of error is slightly more than double the error level below it.
Medium level is just above that encountered in the interest group data. At this le
ertor, the recovery of the coordinates is excellent for both the linear and cubic ¥}
els-—the lowest r-square is 937 for the normal variable-variance model. At the I
level of error, which is about three times the error level in the interest group data, \§
recovery of the coordinates is still fairly good—the r-squares for all three mod
exceed .7. Consequently, a fair conclusion is that the coordinates recovered from 3
interest group ratings are reliably estimated. ' :
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Table 5

Monte Carlo Resuits for Linear and Cubic Time-Series Models

Linear
Distances Coordinates
Error*
?:::gdzcad Normal N.Var.Var Log N. Normal N.Var.Var Log N.
Low ) . 9064 .900 ,899 .996 .998 .998
(.001) ¢.001) (.401) (.004) (.00L) (.000}
.80 .618 .605 619 .990 .990 .990
Hedium (.002) {.002) {.003) (.002) (.002) ¢.003)
1.75 L285 . 368 371 .953 .970 . 968
itigh {.003) (.003) (.005) (.004) (.004) (.007)
Cubic
Low 3s8. .872 910 .908 . 996 .996 .996
(.001) (.001) {.001) {.000) (.004) (.004)
Medium .80 .596 ,632 648 972 ,937 .956
(.002) (.003) (.003) {.003) (.017) (.017)
High 1.7% .210 372 . 399 721 L84l .872
(.015) (.008) (.005) (.020) (.028) (.032)

* ﬁatio of ths standard daviatlon of the error to the standard deviation of
the trus distances,

# Each entry is the mean Pearson r-Squaranor 10 runs at indicated level of
error. Standard deviations ara in parentheses,

6. Conclusion

The purpose of this paper was to show a general approach to least squares, uni-
dimensional scaling. The key to the approach is to use the ordering information con-
tained in the parameters to transform the standard squared error loss function into a
discrete as opposed to a continzous form. The resultant combinatorial problem can
then be conditionally solved by evaluating a small number of possibilities given by the
basic geometry of the parameters.

The family of unidimensional algorithms discussed in this paper all have the prop-
erty that they always descend, and at convergence, every parameter is at its global
minimum conditioned on every other parameter being held fixed. In addition, the al-
gorithms are linear in the number of parameters. This strong form of local minimum
reached by the CGM family of algorithms is rare and the likelihood of the overall global
minimum being reached is very high regardless of the size of the problem. Finally, as
the Monte-Carlo work shows, it reliably recovers randomly generated parameters even
at high levels of both error and missing data.

Appendix

The purpose of this appendix is to show a proof that the family of condi.tiPnal g!obal
minimum algorithms converge to a solution of the least squares metric unidimensional
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scaling problem in which every parameter is at its global minimum when every othe

parameter is held fixed. This boils down to proving that the global minimum is found fog ) lFor a
any arbltrarlly chosen parameter when the remainder are held fixed. I will show this fog nummum_,t
the time series unfolding problem because the proofs for all the other models follg compu}\%;
immediately by simply redefining the appropriate sets of parameters. In addition, I wj 11 mT(h k;
assume that some of the observed distances can be negative—as with the NDCG fas theeeﬂ'e
algorithm.
The squared error loss function for the time series model is the foss eX]
b g - umque i |
= Wi (dE — dy)2, range of {jr
# E, JE, E, (i = dye) : (Al;?_ a specific ©
- points whic
where w,ﬁ isa mlssmg data dummy variable; that is, wy, = 0 if 4, is missing, and wi -1 if)’ g =
= 1 if 4}, is not missing. The coordinate equations are (A5) is the
| remain fixe
Xp = Xobo + Xodn + - ¥ Xing ‘){j!ﬂi (2 n unique &* l.‘
;3 Now, 1
Zp=fpmotinma+ o A i T, (A3 possible ¥
S function, (4
where ¢ = mp = {, n; <r,and n; <rforalliandj. Ordinarily, ¥ = IT but I distinguisk - hasan impl
between the iwo for expository purposes. The case of only one time period, that is, 7§ Cleasly, at
= 1, corresponds to simple unfolding or similarities analysis. If the / () index if} onstrate wit
dropped from the x’s ({’s) and the ¢ index on the ¢’s (#'s) is changed to i (), then thé N '
individual (stimuli} coordinates are polynomial functions of exogenous variables as i '
the “‘Chicago school” economic variables model. Let/ =0, 1, . . . , n be an alternativ{ Lemme
index of the polynomial degree and let it denote the parameter bemg estimated. Defind Proof.
. “constructiol
" "y . .
. (AS) is com
Yiu = E YimXim — Z T om jm s (A _ produced b
=0 m#=l &=
which allows the loss function to be rewritten as o
Lemma
P q r . Skoeﬂle i, js at
p=2 2 2 wulBhdl + v — malp)? . Proof.
i=lj=1t=1 +1 or &Yy =
: However it
where 8} = +1 i wyly > yyy and 8fy = ~1if 7wy < yyu. The case of myfy = ¥ . = 0 and, by
does not present a problem because de Leeuw {1984) has proven that at a local
mum dy; = 0 only if 4}, = 0 (see below). 1n any case, suppose that ng;, = Yy SOt Lemme
dy = 0. For this particular /, j and 7 the squared error is 8¥2d%? = d”? so that the to
{ i i : Proof.
sum of squared error in (AS) corresponding to §J, is the same for 8 i equalto —1or + " minimum.
When 8* is fixed, the value of {; that minimizes the sum of the squared error ‘ l!ummum al
simply the weighted sum of the r time period centroids of the y + §*d*; namely " ‘values in th
equal to the
" P because, w
2w 2w udh + ) . is a mini
N i=1 ) S corTesp
i = ; : - true for o
s Wil S - Yenote the

i=te=1 3 ) pmdllCedt
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For a fixed 8*, (AS) is a convex function with respect to {; and has a unique
minimum, Z;. given by (A6). However, ; may not produce the same 8* used to
compute it. To keep this distinction clear, let 3 be the rp length vector used to compute
%, in (A6) and let 8* be, as above, the actual ordering induced by (.

The key to the algorithm is expressing the loss function in terms of the 8's which
has the effect of turning a continuous problem into a discrete problem. By construction,
the loss expressed by (A35) is exactly equal to the loss expressed by (Al) for all values
of {;. Every possible value of {; produces a 8*. However, there can only be rp + 1
unique * patterns because there are only rp y;y's. This has the effect of dividing the
range of {y—which is ~@ < fy < +co—into rp + 1 regions and all values of {; within
a specific region produces the same &*. These regions can be identified by their end-
points which are the rp ratios yyy/my. If wy = 0, then 83y = +1if y; < 0 and &y =
~1if yjg > 0.y = 0 and my = 0, then 8%, can equal either +1 or —1—the loss in
(A5) is the same either way. In any case, the &8}, corresponding to my’s equal to zero
remain fixed in each of the rp + 1 8* patterns, Consequently, there will not be rp + 1
unique &* if some of the m,’s are equal to zero.

Now, in keeping with the distinction made above, when each one of these rp + 1
possible 8* is used as 8 in (A6), rp + 1 possible minimum values, the Zﬂ, for the lo§s
function, (A5), are produced. I stress the word possible because each of the rp + 1
has an implied pattern of &s, 8*, which may not be consistent with the original pattern.
Clearly, a minimum must have the property that & = &*. In fact, as I will now dem-
onstrate with Lemmas 1 through 3, ;’ﬂ is a minimum of (A5) and (A1) if and only if & =
&%,

Lemmal. If zﬂ from (A6) is a local minimum of (AS) and (A1), then & = &*.

Proof. Assume that £ is produced by 8 and is a local minimum of (Al). By
construction, {; and 8* produce the same loss in (A5) as {y does in (Al). With fixed 8",
{AS) is convex with respect to ; and has a unique minimum. Consequently, the £
produced by §* in (A6) must be the same as that produced by 8. This can only occur
if 8 = 6*, O

Lemma 2 (de Leeuw). If Zﬂ from (A6) is a local minimum of (A5) and (A1} and for
SOl'llc i: j’ and I, d[]l = 0, then dt]f = 0.

Proof. By definition, dj, = 0 so that my{; = yy. But if dy = 0 then either 83, =
+1 or 8’5-,, = —1 will produce the correct loss in (A5) regardless of the value of d"-(},.
However, if a4, # 0 then {; is not unique. This is a contradiction. Consequently, Tt

= 0 and, by Lemma 1, = &* for either 8}, = +1 or —1.

Lemma 3. If 8 = §*, then Zﬂ from (A6) is a local minimum of (A5) and (A1).

] Proof. For fixed 8, (AS) is a convex function with respect to {; and has a unique
m;n?mum. Therefore, since & = &*, Zﬂ is a minimum of (A5). Let {~ and {* denote the
minimum and maximum values of {j such that {~ = {; = {* and 8* is produced by all
values in the interval. The endpoints of a region which produces a 8%, {~ and ¢ * are
equal to the appropriate Yiuly vatios, If {7 < th < ¢, then '{ﬂ is a minimum of (A1)
pecause, with fixed 8%, (AS) and (A1) are exactly equal over the interval [{™, { *1and
¢t is @ minimum of (AS). If {; = ¢~ or J; = {*, then for some i, j, and £, dy, = 0 and
the corresponding 8%y can equal to +1 or —1. By assumption, 8 = 5* and this must be
true for 8%, equal to +1 or —1. This can only happen if d = 0. If {; = Mlet gttt
denote the value of gy such that J; = {* < £ and 8*, with the exception of 8y, is
produced by all values of Zﬂ in the interval. However, since 8}, is irrelevant to the
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calculation of the loss in (A5) (AS) and (Al) are exact]y equal over the interval

1,1
(") Hence,if{” < =¢t < ¢t , then & 1s a minimum of (AS) and (A1). A si ' szwlti(
argument can be made for the case of g:,, =L f gj, ¢ =¢T, then two di,’s anl T34
equal to zero and the corresponding two &7,’s are irrelevant. In thls mstance, g"" i  Clausen !
{ = =¢" <{ and the same result follows. Finally, if §; = ¢* = £+ org’ 3 | Deivs D
- . Psych
{~ = ¢, then, again, two d;’s are equal to zero and the corresponding Bu,, S 7 :
: de Lecuw:
irrelevant. ThlS analysis can be extended indefinitely until a region is identified syg DeSarbo.:
that (A5) and (Al) are exactly equal over the interval and {j is not equal to eithll squar
endpoint of the interval. (AN Eckart, ¢
: f : chom
The next two Lemmas concern the existence of minima. For the first, I nee 2 _ ‘;mﬁ
define some terms. Let dy,, be the largest observed distance and let yy,, and y 0 Heiser, W
denote the largest y;,; and smallest y;, respectively. In addition, let u( - } denote (g Psycl
loss from using the parameters inside the parentheses in (Al). Hlm;}”;
. 3
. o . . Hubert, L
Lemma 4. There exists no minima of (Al) outside the interval de
Hubert,
[ymm - max, Ymax + dmax] sio
. N
Proof. Consider any 7,,{;; > ymax + dhax. By construction, every dii comput Kritzer,
using my{ is larger than the corresponding dy;, computed at the point yy,, + dbd  Kruskal,

Consequently,

#(ﬂl[{ﬂ > Ymax T diax) > }L(Wzifﬂ = ¥max T dihax)-

Furthermore, let € be any arbitrarily small positive constant. By construction

wlmalpy + €)= p(muly = Ymax + dhax)>

so that (A1) is strictly increasing beyond y .y + dnax- A similar argument holds for af
Tadjt < Ymin — Fmax-

The next Lemma was proven by Defays (1978) for the constant coordinate meff§
similarities probiem. ;

Lemma 5. There exists at least one & such that 8 = 8*.

Proof. Since (Al) is continuous, by the Bolzano-Weierstrass theorem, it will ha,
at least one minimum over the interval [y, — dmax, Ymax T dmax]- By construc o
a & always exists such that the loss in (A5) and in (A1) with respect to {j is ldentl
By Lemmas 1, 2 and 3, §= &*.

These results enable me to state the algorithm in the form of a theorem:

Theorem. The polynomial coefficient conditional global minimum (PCCGM) a
rithm always finds the global minimum of any parameter of (Al} conditioned 011 '
remaining parameters being held fixed.

Proof. The algorithm computes the loss associated with each of the rp + 1 poS
8’s so that by Lemmas | through 5, all possible minimums are found.
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