BETA-BINOMIAL – BINOMIAL JOINT DISTRIBUTION OF THE SAMPLE

("LIKELIHOOD"), BETA PRIOR

D. Uniform Prior, Binomial Likelihood:

1. Suppose we take a random sample from a Bernoulli distribution with parameter p. Our joint distribution of the sample is ("Likelihood" function) is:

$$f_n(x | p) = \prod_{i=1}^{n} f(x_i | p) = p^{x_i} (1-p)^{1-x_i} = p^X (1-p)^{n-Y}$$

2. Now, suppose our prior distribution of p is simply Uniform on 0 to 1; that is:

$$\xi(p) = \begin{cases} 1 & 0 < p < 1 \\ 0 & \text{otherwise} \end{cases}$$

3. Hence the joint distribution of the sample and p is

$$h(x_1, x_2, x_3, \ldots, x_n, p) = f_n(x_1, x_2, x_3, \ldots, x_n | p) \xi(p)$$

Or simply:

$$h(x,p) = \frac{f_n(x | \theta) \xi(\theta)}{\Gamma(\alpha) \Gamma(\beta)} = p^X (1-p)^{n-Y}$$

4. The marginal distribution of the sample is:

$$g_n(x_1, x_2, x_3, \ldots, x_n) = \int_{p} h(x_1, x_2, x_3, \ldots, x_n, p) dp = \frac{\Gamma(y+1) \Gamma(n-y+1)}{\Gamma(n+2)}$$

This result is from the form of the Beta distribution is:

$$f(x | \alpha, \beta) = \begin{cases} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{a-1} (1-x)^{b-1} & 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$
Where $\alpha = y+1$ and $\beta = n-y+1$.

5. So that the posterior distribution is:

$$
\zeta(\theta | x_1, x_2, x_3, \ldots, x_n) = \frac{f_n(x_1, x_2, x_3, \ldots, x_n | \theta) \xi(\theta)}{g_n(x_1, x_2, x_3, \ldots, x_n)} = p^y (1-p)^{n-y} \frac{\Gamma(n+2)}{\Gamma(y+1)\Gamma(n-y+1)}$

This is a Beta distribution with parameters:

$$
\alpha = y+1 = \sum_{i=1}^{n} X_i + 1 \quad \text{and} \quad \beta = n - y + 1 = n - \sum_{i=1}^{n} X_i + 1
$$

6. The expected value and variance of the Beta distribution is:

$$
E(X) = \frac{\alpha}{\alpha + \beta} \quad \text{and} \quad \text{VAR}(X) = \frac{\alpha \beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)}
$$

7. Hence, the Bayesian Estimator for the Mean and Variance is:

$$
\hat{p} = \frac{\sum_{i=1}^{n} X_i + 1}{n + 2} \quad \text{and} \quad \text{VAR}(\hat{p}) = \frac{\left(\sum_{i=1}^{n} X_i + 1\right) \left(n - \sum_{i=1}^{n} X_i + 1\right)}{(n + 2)^2 (n + 3)}
$$

8. And the MLE for the Mean and Variance is:

$$
\hat{p}_{mle} = \frac{\sum_{i=1}^{n} X_i}{n} \quad \text{and} \quad \text{VAR}_{mle}(\hat{p}) = \frac{\hat{p}(1-\hat{p})}{n}
$$

Note that, as the sample size increases:

$$
\hat{p}_{bayer} \rightarrow \hat{p}_{mle}
$$

This is also true of the variances. To see this, divide the numerator and denominator by n^2; that is:
\[
VAR(\hat{p}) = \frac{\left(\sum_{i=1}^{n} X_i + 1\right)\left(n - \sum_{i=1}^{n} X_i + 1\right)}{(n+2)^2(n+3)} = \frac{\hat{p}_{\text{mle}} + \frac{1}{n}}{n+4 + \frac{4}{n}} \left[1 - \hat{p}_{\text{mle}} + \frac{1}{n}\right]
\]

So that, as the sample size increases:

\[
VAR_{\text{bayes}}(\hat{p}) \rightarrow VAR_{\text{mle}}(\hat{p})
\]

D. Conjugate Priors (Part 1) – Binomial Joint Distribution of the Sample

(“Likelihood function”) and Beta Prior Distribution – *Bayesian Computation With R*

example of Beta-Binomial

\[
f_n(x | p) = \prod_{i=1}^{n} f(x_i | p) = p^{x_i}(1-p)^{1-x_i} p^{x_i}(1-p)^{1-x_i} \ldots p^{x_i}(1-p)^{1-x_i}
\]

\[
= p^y(1-p)^{n-y} \quad \text{and} \quad y = \sum_{i=1}^{n} X_i
\]

\[
\xi(p) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha-1}(1-p)^{\beta-1}, \quad 0 < p < 1, \quad \alpha, \beta > 0
\]

Recall that the joint distribution of the sample and \(p \) is equal to the product of the joint distribution of the sample (“likelihood function”) and the prior distribution of \(p \):

\[
h(x_1, x_2, \ldots, x_n, p) = f_n(x | p) \xi(p) = p^y(1-p)^{n-y} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha-1}(1-p)^{\beta-1} = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{y+\alpha-1}(1-p)^{n-y+\beta-1}
\]

To get the marginal distribution of the sample we need to integrate out \(p \).

\[
g_n(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(y+\alpha)\Gamma(n-y+\beta)}{\Gamma(n+\alpha+\beta)}
\]

\[
\int_{0}^{1} \frac{\Gamma(n+\alpha+\beta)}{\Gamma(y+\alpha)\Gamma(n-y+\beta)} p^{y+\alpha-1}(1-p)^{n-y+\beta-1} dp = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(y+\alpha)\Gamma(n-y+\beta)}{\Gamma(n+\alpha+\beta)}
\]

And the Posterior distribution is:
This a Beta distribution with \(\alpha^* = y + \alpha \) and \(\beta^* = n - y + \beta \), so the posterior is:

\[
\xi(p \mid x) = \frac{\Gamma(\alpha^* + \beta^*)}{\Gamma(\alpha^*) \Gamma(\beta^*)} p^{\alpha^* - 1} (1 - p)^{\beta^* - 1}
\]

The mean of the posterior is:

\[
E(X) = \hat{p} = \frac{\alpha^*}{\alpha^* + \beta^*} = \frac{y + \alpha}{\alpha + \beta + n}
\]

If we take a second sample and use the posterior as our new prior then

\[
\xi_2(p) = \xi_1(p \mid x) = \frac{\Gamma(\alpha^* + \beta^* + 1)}{\Gamma(\alpha^*) \Gamma(\beta^*)} p^{\alpha^* - 1} (1 - p)^{\beta^* - 1}
\]

and the joint distribution of the sample is (“likelihood function”) for the second sample is:

\[
f_{n_2}(x_2 \mid p) = p^{y_2} (1 - p)^{n_2 - y_2}
\]

where the subscript gives the sample number. The posterior is the Beta distribution

\[
\xi_2(p \mid x_2) = \frac{\Gamma(\tilde{\alpha} + \tilde{\beta})}{\Gamma(\tilde{\alpha}) \Gamma(\tilde{\beta})} p^{\tilde{\alpha} - 1} (1 - p)^{\tilde{\beta} - 1}
\]

where

\[
\tilde{\alpha} = y_2 + \alpha^* = y_2 + y_1 + \alpha \quad \text{and} \quad \tilde{\beta} = n_2 - y_2 + \beta^* = n_2 - y_2 + n_1 - y_1 + \beta = n_1 + n_2 - y_1 - y_2 + \beta
\]

and
\[E(X) = \hat{p} = \frac{\tilde{\alpha}}{\tilde{\alpha} + \beta} = \frac{y_1 + y_2 + \alpha}{\alpha + \beta + n_1 + n_2} \]

As the total sample size gets large this converges to the MLE estimator:

\[E(X) = \frac{\sum_{k=1}^{m} y_k}{\sum_{k=1}^{m} n_k} = \bar{y} = \hat{p} \]