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Notes:  Cigarette Example From Simon Jackman 

8 October 2009 
 

CANCER.ODC 
 

 1. Model → Specification →  
 2.                              double-click "model" 
                                 in Document Window 
 3.                                                   → Check Model 
 4.                              double-click "list" 
                                 under "data' in 
                                 Document Window       
 5.                                                   → Load Data 
 6.                                                   → Compile 
 7.        (if loading inits)    double-click "list" 
           (if loading inits)    under "inits" in 
           (if loading inits)    Document Window 
 8.                                                   → Load Inits 
9. Inference → Samples → type "lambda" → set 
10. Inference → Samples → type "lambda.up" → set 
11. Inference → Samples → type "delta" → set 
12. Inference → Samples → type "delta.up" → set 
11. Inference → Samples → type "lambda" → trace 
12. Inference → Samples → type "lambda.up" → trace 
13. Inference → Samples → type "delta" → trace 
14. Inference → Samples → type "delta.up" → trace 
15. Model → Update → type number in box → update 
16. [Bring "Sample Monitoring Tool" to front]→ select "lambda"→ stats 
17.                                        select "lambda.up" → stats 
18.                                        select "delta" → stats 
19.                                        select "delta.up" → stats 
 
Cancer: difference in two binomial proportions 
 
The following simple model is drawn from an example in Johnson and Albert 's Ordinal Data 
Modeling (p35), using data collected in a study by H.F. Dorn ("The Relationship of Cancer of the 
Lung and the Use of Tobacco", The American Statistician, 1954, V8:7-13).  A sample of 86 lung-
cancer patients and a sample of 86 controls were questioned about their smoking habits.  The 
two groups were chosen to represent random samples from a subpopulation of lung-cancer 
patients and an otherwise similar population of cancer-free individuals.  Of the cancer patients, 83 
out of 86 were smokers; among the control group 72 out of 86 were smokers.  The scientific 
question of interest was to assess the difference between the smoking habits in the two groups. 
 
In implementing this model in WinBUGS, we have just two data points (cancer patients and 
control group) and a binomial sampling model, in which the population proportions of smokers in 
each group appear as parameters.  Quantities of interest such as the difference in the population 
proportions and the log of the odds ratio are computed as auxiliary quantities.   Uniform priors on 
the population proportions are used in this example. 
 
An alternative parameterization appears below, in which the difference in the population 
proportions of probabilities is modeled directly, instead of appearing as an auxilary quantity. 
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model{ 
 ## sampling model for the data 
 for(i in 1:2){            ## loop over observations 
  r[i] ~ dbin(p[i],n[i])  ## p is unknown parameter 
 } 
  
 ## priors 
 p[1] ~ dunif(0,1)         ## uniform distributions 
 p[2] ~ dunif(0,1) 
  
 ## compute quantities of interest 
 delta <- p[1] - p[2]      ## difference in probs 
 delta.up <- step(delta)   ## is delta > 0??? 
 
 ## log of the odds ratio 
 lambda <- log( (p[1]/(1-p[1])) / (p[2]/(1-p[2])) ); 
 lambda.up <- step(lambda)   ## is lambda > 0??? 
} 
 
## data 
list(r=c(83,72),n=c(86,86)) 
 
 
Alternative Parameterization: 
model{ 
 ## sampling model for the data 
 for(i in 1:2){            ## loop over observations 
  r[i] ~ dbin(p[i],n[i])  ## p is unknown parameter 
 } 
  
 ## compute quantities of interest 
 ## log of the odds ratio 
 delta <- p[1] - p[2] 
 lambda <- log( (p[1]/(1-p[1])) / (p[2]/(1-p[2])) ); 
 lambda.up <- step(lambda) ## is lambda > 0??? 
  
 ## priors 
 v[2] ~ dnorm(0,.01);      ## vague prior, logits 
 logit(p[2]) <- v[2];      ## convert to probability 
 v[1] <- v[2] + vdelta;    ## difference in logits 
 vdelta ~ dnorm(0,.01);    ## vague prior on difference 
 logit(p[1]) <- v[1];      ## convert to probability  
} 
 
## data 
list(r=c(83,72),n=c(86,86)) 
 
## initial values 
list(v=c(NA,.5),vdelta=0) 
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I. Cigarette Example (from Simon Jackman) 

Classical Hypothesis Testing Structure 

 
                         Ho: p1 - p2 = 0 
                         H1: p1 - p2 ≠ 0  
 
            The decision rule for this problem is:  
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For a one tail test this corresponds to a p-value of about 0.002. 

A. Bayes Results – Not much different! P-value of .004. 

1. Load cigarette.odc into WINBUGS 

2. Select “Model” and then the drop-down option “Specification” 

3. Go to cigarette.odc and double-click “model” then push 

“Check Model” button. 

4. Go to cigarette.odc and double-click “list” and then push “load 

data” 

5. Now click “gen inits” (this generates initial values for the 

parameters). 
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6. Now we set up our sample monitoring.  Click “Inference” and 

then select “Samples” from the drop-down options.  “Sample 

Monitoring Tool” will appear with the cursor flashing in the 

“node” box. 

7. In the WINBUGS language everything is couched in “nodes”.  

It is not a normal programming language!  In WINBUGS the 

MLE is set up as a distribution, the priors are distributions, 

then the posterior is usually a formula – using R type syntax.  

In the cigarette case the nodes are “delta”, “delta.up”, 

“lambda”, and “lambda.up”.   

8. One at a time type this in the “nodes” box and click “set” 

9. Now, to see traces of the nodes use the drop-down option on 

the side of the “nodes” box to select each node in turn and click 

on “trace” 

10. Now select “model” and select the drop-down option “update” 

and it brings up the “Update tool”.  It defaults to 1000 updates 

so just accept that and click “update” and the model runs. 
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11. The traces are plots of the variable value against the iteration 

number. 

12.  
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  node   mean  sd  MC error 2.5% median 97.5% start sample 
 delta  0.124 0.04575 0.001473 0.03341 0.1263 0.2158 1 1000 

delta.up  0.996 0.06312 0.001908 1.0 1.0 1.0 1 1000 
lambda  1.549 0.6269 0.01987 0.3899 1.526 2.856 1 1000 
lambda.up 0.996 0.06312 0.001908 1.0 1.0 1.0 1 1000 
 

 

13. The “step” function, step(e)=1, if e>=0, 0 otherwise.  So the 

means of delta.up and lambda.up are just p-values!  That is, 

996 of 1000 times delta.up and lambda.up were greater than 

one. 

B. Alternative Specification – Same steps as above but note that this 

illustrates the maddening fact about WINBUGS – It does not obey the 

normal programming rules!!  Because everything is nodes the compiler 

does not care what order you type them in! 

1.  Select “Model” and the drop-down option “specification”, 

double-click on “model” under the “Alternative 

Parameterization” label, click “check model” and a dialog box 

pops up and tells you that “the new model will replace the old 

one” and you click “OK”. 

2. Double-click on the word “list” in the Alternative 

Parameterization and click “load data”. 

3. Now click “compile” but instead of choosing to generate initial 

values we have initial values for this example so double-click 

on “list” below where it says “## initial values” and then click 

“load inits” 
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4. Select “Inference” and the drop-down option “Samples” and 

select the nodes “delta”, “lambda”, and “lambda.up”.  Set up a 

trace for each node. 

5. Now select “model” and select the drop-down option “update” 

and it brings up the “Update tool”.  It defaults to 1000 updates 

so just accept that and click “update” and the model runs. 
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6. The statistics are: 

  Node   mean  sd  MC error 2.5% median 97.5% start sample 
 delta  0.1289 0.04222 0.001913 0.05163 0.1274 0.2162 1 1000 
 lambda  1.833 0.6945 0.02982 0.6387 1.811 3.308 1 1000 
 lambda.up 0.999 0.03161 0.001004 1.0 1.0 1.0 1 1000 

7.  So our p-value for this experiment is .001. 
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8. Note that it makes more sense to write the model after the MLE 

statement as follows: 

  
 ## priors 
 v[2] ~ dnorm(0,.01);      ## vague prior, logits 
 vdelta ~ dnorm(0,.01);    ## vague prior on difference 
 v[1] <- v[2] + vdelta;    ## difference in logits 
 logit(p[1]) <- v[1];      ## convert to probability  
 logit(p[2]) <- v[2];      ## convert to probability 
 
Note how complex these priors are!  The two variables of interest – p[1] and p[2] – are random 
variables embedded in the logit formula!  Technically, 

,  - <  +
1 v

ep
e

ν

ν∞ ∞
+

  

And   
2

200001
200

e
ν

ν
π

−
  

 
 ## compute quantities of interest 
 ## log of the odds ratio 
 delta <- p[1] - p[2] 
 lambda <- log( (p[1]/(1-p[1])) / (p[2]/(1-p[2])) ); 
 lambda.up <- step(lambda) ## is lambda > 0??? 
 

 

 


