5.1a) biasprob
 [1] 0.7263436

b) Using m=100000 I get:

acceptrate
 [1] 3534
probthetagt0
 [1] 0.7328806

c) probthetasirgt0
 [1] 0.73406

R Code:
#
Chapter 5 -- Bayesian Computation With R
Problem 5.1
#
Remove all objects just to be safe
rm(list=ls(all=TRUE))
#
library(LearnBayes)
#
Set up log function for problem -- In this case the log of
the product of product of success probabilites expressed
in logit-type form and a Normal Prior with mean 0 and sigma=0.25
#
g(theta|y) ~ [exp(y*theta)/(1 + exp(theta))**n]*exp[-(theta - mu)/2*Sigma^2]
#
where theta = log[p/(1-p)] => p = exp(theta)/(1 + exp(theta))
#
logf <- function(theta,parameters)
{
 y <- parameters[1]
 n <- parameters[2]
 mu <- parameters[3]
 sigma <- parameters[4]

 # log of posterior
 logposterior <- y*theta-n*log(1+exp(theta))-((theta-mu)^2)/(2*sigma^2)
 return(logposterior)
}
#
laplace is part of the LearnBayes Library -- It finds the mode of the
log poserior density. At the mode it uses a Taylor Series approximation
and the posterior density is approximated by a multivariate normal
density with mean Theta and VCOV equal to the Inverse numerical Hession
#
Note that the second argument is the best guess about the value of theta --
theta is the **only** variable here! Since the data indicate that theta >0
we start laplace there to find the mode
#
parameters <- c(5, 5, 0, 0.25)

fit <- laplace(logf,0,parameters)
#
fit
$mode
[1] 0.1449219
So this gives a Normal(0.1449219, 0.057993)

Part (a): Using the pnorm(x,mean,sd) function in R we get:

```r
biasprob <- 1 - pnorm(0,mean=fit$mode,sd=sqrt(fit$var))
```

What this computes is the probability above zero for a N(0.1449219, 0.057993)

```r
biasprob
```

```r
[1] 0.7263436
```

Part (b): Rejection Sampling

Need to sample theta from a function p(theta) such that the ratio of
the posterior and the sampling function is less than one:

```markdown
\[ g(\theta|y) / [c \cdot p(\theta)] < 1 \]
```

Then draw a uniform random number using runif(x) in R. If

```r
runif(x) <= g(\theta|y) / [c \cdot p(\theta)] \]
```

so (1) draw theta from p(\theta)
(2) compute value of g(\theta|y) / [c \cdot p(\theta)]
(3) draw uniform random number and accept theta if runif(x) <=
\[g(\theta|y) / [c \cdot p(\theta)] \]

Note the logic -- the closer the ratio is to one the likelier the acceptance rate.

What this does with a huge number of draws is that it results in a set of thetas that
will approximate the posterior distribution. This will always work provided the
p(\theta) distribution is ***always above*** g(\theta|y)

Simple solution here is to set p(\theta) = N(0, sd=.25), namely the prior in the
problem. This **guarantees** that the ratio is less than one

```r
rejectsample <- function(m)
{
  theta <- rnorm(m,mean=0,sd=.25)
  ratiogoverp <- exp(5*theta)/(1+exp(theta))^5   # This is just the posterior/prior from
  p. 111
  return(theta[runif(m) < ratiogoverp])
}
m <- 100000
partb <- rejectsample(m)
acceptrate <- length(partb)
probsagtagt0 <- mean(partb > 0)
# acceptrate
# [1] 350
# This is a really low acceptance rate but it works
# probsagtagt0
# [1] 0.7657143
# Here is a run with m=100,000
# acceptrate
# [1] 3633
# probsagtagt0
# [1] 0.7263969
```
part (c): Sampling Importance Resampling (SIR) algorithm

(1) Sample from the proposal density, in our case N(0, sd=0.25), \(j = 1, \ldots, m \) times
(2) Compute weights -- posterior/proposal -- \(w(\theta_j) = g(\theta_j|y)/p(\theta_j) \)
(3) Convert the weights to probabilities -- \(p_j = w(\theta_j)/\sum_{j=1,m} w(\theta_j) \) --

Note that this produces \(m \) probabilities

(4) Use R sample command to draw a sample of the \(\theta_j \)'s with replacement -- The
logic here is that the likelihood of a \(\theta_j \) being drawn is its ***relative*** weight in
the vector of "prob" that is passed to sample. The larger its weight **relative** to
the other weights the more often it is drawn.

sample(x, size, replace = FALSE, prob = NULL) -- the defaults

Arguments for sample function
- x: Either a (numeric, complex, character or logical) vector of more than one element
- size: positive integer giving the number of items to choose.
- replace: Should sampling be with replacement? TRUE or FALSE
- prob: A vector of probability weights for obtaining the elements of the vector being sampled.
 They need not sum to one, but they should be nonnegative and not all zero.

\(m \leftarrow 10000 \)

\(\theta_{sir} \leftarrow \text{rnorm}(m, \text{mean}=0, \text{sd}=0.25) \)
\(\text{ratiopostprob} \leftarrow \exp(5*\theta_{sir})/(1+\exp(\theta_{sir}))^5 \) # ratio of posterior/proposal
\(\text{probweights} \leftarrow \text{ratiopostprob}/\text{sum(ratiopostprob)} \)
\(\theta_{post} \leftarrow \text{sample}(\theta_{sir}, \text{size}=100000, \text{replace=TRUE, prob=probweights}) \)
\(\text{probthetasirgt0} \leftarrow \text{mean}(\theta_{post} > 0) \)

\[\text{probthetasirgt0} \]
[1] 0.7298

Here is a run with \(m = 100,000 \)
\(\text{probthetasirgt0} \)
[1] 0.72714
b) There are a variety of ways you could have programmed this. Here is what I did:

```r
# POL 272 Bayesian Methods
# Assignment 5.2
# Chapter 5, Exercise 2 of Bayesian Computation with R
#
rm(list=ls(all=TRUE))
library(LearnBayes)
#
# Part (a)
#
mylogpost<-function(eta, data){
  theta <- exp(eta)/(1+exp(eta))
  logpost <- data[1]*log(2+theta)+data[2]*log(1-theta)+data[3]*log(theta)
  return(logpost)
}
#
data <- NULL
data[1] <- 125
#out<-laplace(mylogpost,mode=1,par=c(125,39,35))
out<-laplace(mylogpost,mode=1,data)
#
# out
#$mode
#[1] 0.50625
#$var
#$ [,1]
#[1,] 0.047318
#$int
#[1] 65.32634
#$converge
#$ [1] TRUE
#
mu<-out$modesd<-sqrt(out$var)
#
theta.interval <- mu + c(-1.96, 1.96)*sd
#
# theta.interval
# [1] 0.07989705 0.93260295
#
eta.interval <- exp(theta.interval)/(1+exp(theta.interval))
#
# eta.interval
# [1] 0.5199636 0.7176031
#
#
# Part (b)
#
# We are supposed to use a t-distribution with mean and variance from
# the laplace output above with a small number of degrees of freedom
# He covers this on pages 99 - 100
#
tparameters <- list(mu = 0.50625, var = 0.047318, df = 4)
#
# function to compute log(posterior) - log(proposal) -- we use this
# to find the scaling constant "c" -- see Problem_Chap_5_1.r -- this
# means that our t-distribution will always be **above** the posterior
```
used in Part (a) above

mylogpostdiff <- function(eta, tparameters) {
 theta <- exp(eta)/(1+exp(eta))
 logpostx <- 125*log(2+theta)+39*log(1-theta)+35*log(theta)
 # diff <- logpostx -
 dmt(eta, mean=c(tparameters$mu), S=tparameters$var, df=tparameters$df, log=TRUE)
 diff <- mylogpost(eta, data) -
 dmt(eta, mean=c(tparameters$mu), S=tparameters$var, df=tparameters$df, log=TRUE)
 return(diff)
}

Now use laplace to maximize log(posterior) - log(proposal)

fmax <- laplace(mylogpostdiff, .5, tparameters)

fmax <- mylogpostdiff(fmax$mode, tparameters)

thetatest <- rejectsampling(mylogpost, tparameters, dmax, 10000, data)