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NOTES ON THE NOMINATE MODEL 

(December, 2006) 

Legislator i‟s (i=1,…,p) utility for the Yea outcome on roll call j (j=1,…,q) is: 
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where uijy is the deterministic portion of the utility function, ijy is the stochastic portion, 

and ijkyd2 is the distance of legislator i to the Yea outcome on the k
th

 (k=1,…,s) dimension 

for roll call j: 
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ijky ik jkyd  = (X  - O )2                                (2) 

and Xik is the i
th

 legislator‟s ideal point on dimension k, and Ojky is the “Yea” outcome 

location for the j
th

 roll call on the k
th

 dimension.  

 Note that uijy bears a strong family resemblance to a multivariate normal 

distribution with variance-covariance matrix, Σ, equal to the s by s identity matrix, Is; 

namely: 
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where  is simply a proportionality constant that functions as a “signal-to-noise” ratio; 

that is: 
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Although uijy is not a probability distribution it is instructive to look at what is 

implied about the underlying metric by equation (3).  Ignoring β*, if Σ = Is and the vector 

of means, μ, is the s length ideal point vector, Xi , then by definition for large samples: 
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where Oky is the q-length vector of Yea policy outcomes on dimension k, Jq is q-length 

vector of “1”s, and Xik and Xiℓ are the i
th

 legislator‟s ideal point on dimensions k and ℓ 

respectively.   

 In other words, treating the utility function as if it were a multivariate normal 

probability density function means that the outcomes are concentrated within a 

hypersphere of radius 2 centered on the ideal point for reasonable values of s.  For 

example, in two dimensions using polar coordinates, 86.5 percent of the outcomes will be 

within a circle of radius 2: 
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Note that in one dimension this is 95.45 percent.  As the number of dimensions increases 

the distribution becomes “squished” down so that the radius of the hypersphere 

containing a fixed percentage of the outcomes, for example, 95 percent, must increase.  

(Unfortunately, the multivariate normal can only be integrated in two dimensions.)  As a 

practical matter this is not much of a problem because most applications are in one and 

two dimensions.  However, for higher dimensional scalings this characteristic must be 

taken into account. 
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 In any event it is not sensible to assume that the policy outcome points are 

distributed in some symmetric form around a particular legislator.  The legislator ideal 

points themselves are dispersed over the underlying evaluative dimensions so that 

extreme legislators cannot be viewed as means of multivariate normal distributions of 

policy outcomes.  In addition, the dispersion of the outcomes must be greater than the 

dispersion of the legislators because, for lopsided roll calls, the winning alternative is 

acceptable to a large majority of legislators so that the losing alternative must be 

relatively extreme.  Specifically,  
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Where kyO is the mean of the q Yea policy outcomes on dimension k, kX is the mean of 

the p legislator ideal points on dimension k, and Jp is a p length vector of “1”s.   

However, the dispersion of the winning alternatives should be approximately the 

same as the dispersion of the legislators.  Let Okw be the q-length vector of winning 

policy outcomes on dimension k.  Then 

       
1 1

1 1
    k=1,...,s' '

q p

kw kw q kw kw q k k p k k p

j j

O O J O O J X X J X X J
q p 

           (4) 

 Ignoring the problem of constraints on the distribution of the ideal points and/or 

the policy outcomes for the time being, note that because there is no absolute metric the 

same level of utility, Uijy , can be produced be either fixing the scale of the deterministic 

utility, uijy , and varying the standard deviation of the error, εijy , that is: 

   ijy ~ N(0, 
2σ

2
)    so that    ijn - ijy ~ N(0, ζ

2
) 
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Alternatively, ζ
2
 can be fixed and the relative weight of uijy in the overall utility, Uijy , can 

be adjusted by increasing/decreasing .  In other words, without loss of generality we can 

assume that:  

ijn - ijy ~ N(0, 1)                                           (5) 

This implies that the distribution of the difference between the latent utilities for Yea and 

Nay is normal with mean uijy - uijn  and variance 1; that is  
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~ N(uijy - uijn , 1)                                  (6) 

where *

ijy  is the difference between the latent utilities. 

The probability that legislator i votes Yea on the j
th

 roll call is: 

 Pijy = P(Uijy > Uijn ) = P(ijn - ijy < uijy - uijn ) = Φ(uijy - uijn) = 
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 Let Y be the p by q matrix of observed Yea/Nay choices and let Y
*
 be the p by q 

matrix of unobserved latent utility differences.  From a classical perspective the joint 

probability distribution of the sample is:  

  f(Y
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Where Y
*
 is the p by q matrix of latent utility differences.  Note that equation (8) is not a 

typical joint p.d. of the sample.  Technically, a random sample is a set of independent and 
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identically distributed random variables so that the joint p.d. of the sample is (DeGroot, 

1986, p. 316):  

fn(X1 , X2  ,…, Xn | θ) = f(X1 | θ) f(X2 | θ)… f(Xn | θ) 

where f(X | θ) is the distribution from which the random sample, X1 , X2  ,…, Xn , is 

drawn.  In contrast each of the pq elements of Y
*
 is a random sample of size one from the 

corresponding N(uijy - uijn , 1) distribution.  The joint p.d. is a pq-variate normal 

distribution with variance-covariance matrix Ipq : 
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To see that equation (8) is indeed a legal probability distribution note that: 
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*
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In the joint p.d. of the sample, f(Y
*
 | uijy-uijn), the 

*

ijy  are the random variables and 

the ps+2qs+1 parameters -- Xi1 , X i2 , …, Xis , the qs Yea outcome coordinates – Oj1y , 

Oj2y ,…, Ojsy , the qs Nay outcome coordinates -- Oj1n , Oj2n ,…, Ojsn , and β – are fixed 



 6 

constants.  Following DeGroot (1986, p. 317), if we regard f(Y
*
 | uijy-uijn) as a function of 

the parameters for given values of the *

ijy then it is a likelihood function; that is 
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Which is identical to equation (8) only now the pq *

ijy  are observed and the ps+2qs+1 

parameters are variables (but not random variables), and the problem is to find values of 

the parameters that maximize equation (9).   

Equation (8) is a probability distribution over the pq dimensional hyperplane with 

dimensions corresponding to the 
*

ijy .  Equation (9) is a function defined over the 

ps+2qs+1 dimensional hyperplane with dimensions corresponding to the ps legislator 

coordinates -- Xi1 , X i2 , …, Xis , the qs Yea outcome coordinates – Oj1y , Oj2y ,…, Ojsy , 

the qs Nay outcome coordinates -- Oj1n , Oj2n ,…, Ojsn , and β.  Although equation (9) is 

not a probability distribution it is the case that it is above zero over the ps+2qs+1 

hyperplane; that is: 

L
*
( uijy-uijn | Y

*
 ) ≥ 0,  0 < β < +∞,  -∞ < Xik , Ojky , Ojkn < + ∞  

In addition, the hypervolume underneath the function is almost certainly finite: 
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   K* < +∞                                                                 (10) 

Because as β → +∞ clearly L
*
( uijy-uijn | Y

*
 ) → 0; and as the absolute value of any of the 

legislator and roll call parameters becomes large the likelihood function goes to zero; that 
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is, as |Xik|→ + ∞ clearly L
*
( uijy-uijn | Y

*
 ) → 0.  L* is shaped like a multivariate normal 

in that it is quasi-concave along each dimension and asymptotes towards zero fairly 

quickly.  However, I have no formal proof that the hypervolume is finite.  

The fact that L
*
( uijy-uijn | Y

*
 ) is everywhere non-negative and almost certainly 

has a finite integral is important because the same simulation methods used to find the 

values of parameters for Bayesian posterior distributions – Metropolis-Hastings sampling 

and Gibbs sampling – can be utilized with L* because, for all intents and purposes, it can 

be treated as a probability distribution.  This property will figure in the discussion of the 

actual likelihood function, L( uijy-uijn | Y ), below. 

Unfortunately, the latent utility differences are not observed and we do not have 

any simple expression for the joint probability distribution for the sample of discrete 

choices -- f(Y | uijy-uijn).  However, it is easy to write down the distribution corresponding 

to any particular choice, that is, fij(yij | uijy-uijn).  The product of these pq distributions is 

proportion to the joint p.d. of the sample and the likelihood function.  Specifically, let: 
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If the yij are independent Bernoulli random variables, that is: 
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where η is the index for Yea and Nay, Pijη is the probability of voting for choice η, and 

Cijη= 1 if the legislator‟s actual choice is η and zero otherwise.  (This representation is 

convenient for working with the derivatives and for multi-choice situations.  More on this 

below.) 

Note that f(Y | uijy-uijn) is a discrete distribution with 2
pq

 possible outcomes.  By 

definition, the ps+2qs+1  parameters are fixed constants and the yij are the random 

variables.  Hence, we can apply standard probability theory to find the proportionality 

constant: 
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Fortunately, knowing the value of K is not important and does not affect the 

analysis of the likelihood function, L(uijy-uijn | Y).  Technically, the likelihood function 

has exactly the same expression as f(Y | uijy-uijn ).  In this case the 1/K is missing.  This 

has no effect because it is as if the true likelihood function were multiplied by K.  When 

gradient methods are applied to the likelihood function all that matters is the relative 

heights of the function.  In addition, when logs are taken the proportionality constant 

becomes an additive constant and plays no role in the estimation. 

The joint p.d. of the sample, f(Y | uijy-uijn), is a discrete probability distribution 

with 2
pq

 possible outcomes.  The likelihood function, L(uijy-uijn | Y), is a continuous 

distribution over the ps+2qs+1 dimensional hyperplane with dimensions corresponding to 

the ps legislator coordinates, the 2qs outcome coordinates, and β.  Although equation (11) 
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is not a probability distribution it is the case that it is above zero over the ps+2qs+1 

hyperplane; that is: 

L( uijy-uijn | Y ) ≥ 0,  0 < β < +∞,  -∞ < Xik , Ojky , Ojkn < + ∞  

Unfortunately the hypervolume underneath the function is not finite; that is: 
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      +∞                                                  (12) 

The likelihood function in equation (11) is the product of the pq probabilities of 

the observed choices.  The value of the function is a maximum of 1 and a minimum of 

zero.  Note that if all the legislators are voting correctly, that is, Pijc > .5 (or uijc > uijb) for 

all i and j where “c” means “correct choice” and “b” means “incorrect choice”, then as β 

→ +∞ clearly L( uijc-uijb | Y ) → 1.  Conversely, if for at least one choice a legislator 

votes “incorrectly”, uijc < uijb so that Pijc < .5, then as β → +∞ clearly L( uijc-uijb | Y ) → 

0.  With voting error L( uijy-uijn | Y ) asymptotes very quickly to zero because Φ(uijc-uijb ) 

goes to zero very quickly as β increases.  

Now consider the effect of the legislator and outcome coordinates.  Suppose 

|Xik|→ + ∞ then a simple inspection of equation (7) shows that:  
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So that this converges to .5
q
 as |Xik|→ + ∞.  This shows that L( uijy-uijn | Y ) does not 

asymptote to zero along the dimensions corresponding to legislator coordinates so that 

the hypervolume underneath L( uijy-uijn | Y ) is infinite. 

 The fact that L( uijy-uijn | Y ) has an infinite hypervolume has no practical effect 

on a standard maximum likelihood analysis.  This is so because at a great distance from 

the center of the space defined by the legislator and outcome points the likelihood 

function is a flat, featureless vista.  That is, the maxima are towards the interior of the 

function and are easily found by conventional gradient and quasi-gradient methods.  

However, the use of simulation methods is inappropriate because L( uijy-uijn | Y ) cannot 

be treated as if it were a probability distribution. 

 The Bayesian approach avoids the problem of infinite volume through the 

judicious choice of prior distributions that when multiplied through the likelihood 

function produce a distribution that is proportional to a probability distribution.  In a 

standard Bayesian approach the prior distribution for a legislator ideal point is a 

multivariate normal distribution with variance-covariance matrix ζ
2
Is:   
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Similarly, assume that the prior distributions for the outcome points are also multivariate 

normal distributions with variance-covariance matrices ζ
2
Is: 
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 The posterior distribution for the NOMINATE model is: 

ξ(β, Oy, On, X | Y)    
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By definition  

ξ(β, Oy, On, X | Y) ≥ 0,   0 < β < +∞,  -∞ < Xik , Ojky , Ojkn < + ∞  

and the hypervolume underneath ξ(β, Oy, On, X | Y) is finite.  Specifically, as the 

legislator ideal points and/or the outcome points go to +∞ then ξ(β, Oy, On, X | Y) goes to 

zero.  For example, as |Xik|→ + ∞ then ξ(Xi) → 0 so that ξ(β, Oy, On, X | Y) → 0.   

y n 11 11 11
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... ( ,  O , O , X | Y) ... ... ... ...pk y qky n qknd dX dX dO dO dO dO K  
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Theoretically, simulation methods can be applied to the posterior distribution 

expressed in equation (16) but not to the likelihood distribution expressed in equation 

(11).  The irony here is that if “believable” standard errors are to be obtained for the basic 

model either the parametric bootstrap (L&P) or the simulation approach are the best 

methods to do so because inverting the information matrix is problematic.  I say “ironic” 

because one could favor the use of (16) over (11) on these practical grounds rather than 

the philosophical grounds of the “Bayesians” (non-“Frequentists”). 
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However, there is good reason to be skeptical of the Bayesian approach.  What in 

fact are we modeling when we multiply the likelihood function by ξ(Xi)?  Either we 

believe that legislators have ideal points or that “ideal points” are in fact distributions 

from which a decision maker makes a momentary psychological draw when a decision is 

made.  This is indeed the model used by many Psychologists (see Poole, 2005, for a 

discussion of this literature).  To multiply the likelihood function by ξ(Xi) ~ N(0,1) does 

not model this.  Instead we would want to assume that 

i i

2

i X X sX N( , I )                                      (17) 

Where 
iX  is the mean of the ideal point distribution with variance-covariance matrix 

i

2

X sI  and we would expect that 
i

2

X would be quite small. 

Alternatively, we can regard the prior distribution ξ(Xi) ~ N(0,1) as a reflection of 

our personal uncertainty about Xi.  This subjectivist approach is more about us than 

modeling the behavior of legislator i.  However, from another perspective multiplying the 

likelihood function by ξ(Xi) ~ N(0,1) is neither an expression of our personal uncertainty 

or a statement that legislator ideal points are distributions.  Rather, we can simply state 

that it operates as a constraint on Xi; that is, the Xi of relatively extreme legislators are 

not allowed to drift off into outer space.   

Bottom line: in the computer code we should use the natural log of equation (16) 

(see below) and use classical methods to find the maxima for large problems and the 

parametric bootstrap to obtain the standard errors.  For smaller problems we can 

experiment with incorporating the simulation methods to find the standard errors. 

Before considering the logs of the likelihood and Posterior distributions, it is 

instructive to consider the implications of equation (17).  In the Shepard-Ennis-Nofosky 
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model of stimulus comparison people use a simple mental model to compare two stimuli.  

The distinguishing features of the stimuli are assumed to be represented by dimensions in 

a simple geometric model.  The stimuli are positioned on the dimensions according to the 

levels of the attributes represented by the dimensions.  People are assumed to perceive 

the stimuli correctly with some random error.  When asked to perform a stimulus 

comparison, people draw a momentary psychological value from a very tight error 

distribution around the locations of each of the stimuli.  Their judgment of similarity (the 

response function) is assumed to be an exponential function of the psychological distance 

between the two stimuli -- e
-kd

 -- where d is the distance between the two momentary 

psychological values expressed as points in psychological space, and k > 0 is a scaling 

constant (see the figure below).   
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 Suppose an individual is comparing her ideal point with a policy outcome under 

this model.  That is, assume that: 

j j

2

j O O sO N( , I )                                      (18) 

Let the distance between the two draws be: 

s
2

ij ik jk

k 1

1
2

d (X O )


 
  
 
  

where iX and jO are the two points drawn from equations (17) and (18), respectively.  

Hence the perceived similarity would be 

ijkd

ijS e


  
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The graph below shows the expected value of ijkd
e


 (vertical axis) for 40 values of 

the true distance (horizontal axis) between 
iX and 

jO in two dimensions with k=1.  The 

expected value was found by doing 10,000 draws from the two bivariate normal 

distributions with standard deviations of 
iX 0.001   and 

jO 0.40   respectively, 

computing the distance, exponentiating the result and taking the mean over the 10,000 

draws. 

 

Even though the legislator distribution is essentially a point the expected value of 

the response function is Gaussian.  What this shows is that the Shepard-Ennis-Nofosky 

response function theory is basically equivalent to the basic NOMINATE random utility 



 16 

model shown in equation (1).  That is, in the S-E-N model a legislator would draw a 

momentary psychological value from her ideal point distribution and values from the Yea 

and Nay outcome distributions.  Hence if ijy ijnkd kd
e e
 

 vote Yea and if ijy ijnkd kd
e e
 

 vote 

Nay.  Note that the error (randomness) in the model is embedded in dijy and d ijn so that 

P(i votes Yea on j
th

 roll call) =    ijy ijn ijy ijnkd kd kd kd
P e e P e e 0

   
     

This would be an interesting model to try to estimate.  I am unclear what a 

Bayesian approach would be here other than the prior assumption that all the distributions 

are multivariate normal but this is more like a classical modeling assumption.  Equation 

(17) could not be used as a prior distribution because 
iX and 

i

2

X are parameters we 

would want to estimate.  Furthermore, if we assumed we knew 
iX as we do when we use 

vague priors then the whole enterprise would be pointless. 

Returning to the main model the natural log of the likelihood function in equation 

(11) is: 

 Ξ = ln{L(uijy-uijn | Y)} =
p q p q

ij ij ijc

i j i=1 j=1

C ln P lnΦ βψ
2

1 1 1

 

  

                   (19) 

Where  

s s
2 2
ijkc ijkb

k=1 k=1

1 1
d d

2 2

ijc e  - e

   
    
   
   
 

    

and the subscript “c” stands for the observed choice and “b” for the alternative not 

chosen.  In terms of estimation it is convenient to write the roll call outcome coordinates 

as functions of the midpoint and half the distance between the outcomes: 

Ojkc = Zjkm - δjkc    

Ojkb = Zjkm + δjkc    
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where 

 jky jkn

jkm

O O
Z

2


     and   

 jkb jkc

jkc

O O

2


   

 However, for the time being I will stick with Ojkc and Ojkb because it aids in the 

interpretation of the derivatives.   

The first derivatives of equation (17) are below.  It is helpful when examining 

them to recall the chain rule for the normal distribution and its integral: 

Φ(u)
 = f(u)du

u




  and  

f (u)
 = f(u)(-u)du

u




   

and the basic rule for the derivative of a ratio: 
u vdu udv

v v

 
  
 

2
. 

 
 

p q
ijc

ijc

i 1 j=1 ijc

f




 

  
                                   (20) 

 
 

   

s s
2 2
ijkc ijkb

k=1 k=1

1 1
q d d

2 2ijc

ik jkc ik jkb

j 1ik ijc

f
e X O e X O

X

   
    
   
   



            
      

   (21) 

 
 

 

s
2
ijkc

k=1

1
p d

2ijc

ik jkc

i 1jkc ijc

f
e X O

O

 
 
 
 



        
      

   (22) 

 
 

 

s
2
ijkb

k=1

1
p d

2ijc

ik jkb

i 1jkb ijc

f
e X O

O

 
 
 
 



         
      

   (23) 

 The derivatives shown above all have a similar form in that they all contain the 

inverse Mill‟s Ratio, 
 
 

ijc

ijc

f 

 
, which applies a larger positive weight to the incorrect 

choices relative to the correct choices (see graph below):   
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The effect of the inverse Mills Ratio is best illustrated by examining the first and second 

derivatives for β.  The second derivative for β is: 

 
 

 
 

2 p q
ijc ijc2

ijc ijc2
i 1 j=1 ijc ijc

f f



   
     

      
                     (24) 

Now, setting the first derivative for β equal to zero and rearranging: 
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 
 

 
 

ijc ijc

ijc ijc

correct incorrectijc ijc

f f 
   

   
                          (25) 

Rearranging the second derivative in the same fashion produces: 

 
 

 
 

 
 

2 p q
ijc ijc ijc2 3 3

ijc ijc ijc2
i 1 j=1 correct incorrectijc ijc ijc

2
f f f



    
       

        
       (26) 

For incorrect choices ψijc < 0 and the corresponding 
 
 

ijc

ijc

f 

 
 is larger than for correct 

choices, ψijc > 0.  In addition, note that
 
 

p q
ijc2

ijc

i 1 j=1 ijc

2
f

0


 
  

   
 , 

 
 

ijc3

ijc

correct ijc

f
0


  

 
  , and 

 
 

ijc3

ijc

incorrect ijc

f
0


  

 
  .   

Suppose that legislators simply flip fair coins so that the roll call votes are 

clustered around 50-50.  As Howard and I determined 20 years ago NOMINATE will 

scale this data and achieve a correct classification about equal to:  

Correct Classification = 

 
q

j
j

Majority Side of  Roll Call

*
Total Votes Cast




1

100  

Note that this number will be slightly above 50 percent.  In this instance β will be quite 

small because of the asymmetry of the inverse Mills Ratio.  With β close to zero the 

 
 

ijc

ijc

f 

 
 terms will all be close to approximately .798 (see figure above) so that 

equation (25) will be satisfied.  Furthermore, 
2

2
0

 



 because the first term of equation 
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(26) will dominate the third term because of the multiplication of the third term by β so 

that the inflection point will be a maximum.   

 In contrast, consider the effect of a very high rate of correct classification.  In this 

case β will become large.  Because there are few classification errors, for equation (25) to 

hold β must be large to drive up the magnitude of the 
 
 

ijc

ijc

f 

 
 terms corresponding to 

the classification errors.  This in turn drives down the 
 
 

ijc

ijc

f 

 
 terms corresponding to 

the correct classifications so that equation (25) has a solution.  Also 
2

2
0

 



 because 

with a small number of errors the second and third terms of equation (26) will be 

approximately equal.  To see this note that, ignoring the multiplication by β, the second 

term is the same as the left hand side of equation (25) only ψijc has been replaced by 
3

ijc .  

Similarly, the third term of equation (25) is the same as the right side of equation (26) 

only ψijc has been replaced by 3

ijc ; that is, each term on both sides is weighted by the 

square of its corresponding ψijc term and 
2

ijc 1  .  In other words, suppose 0





 then  

 
 

 
 

ijc ijc3 3

ijc ijc

correct incorrectijc ijc

f f 
   

   
     

so that the second and third terms in equation (26) roughly cancel out and 
2

2
0

 



 

because of the first term. 
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 Before turning to the natural log of the Posterior distribution in equation (16) note 

that the first derivative for the legislator coordinate can be rearranged into an implicit 

equation: 

 
 

 
 

s s

ijkc ijkb

k=1 k=1

q d d
ijc

jkc jkb

j ijc

ik ik
q

ijc

ijc

j=1 ijc

f βψ
e O e O

Φ βψ

X g(X )
f βψ

ψ
Φ βψ

   
    
   
   



      
    

 
 
 
 
 





2 21 1

2 2

1

      (27) 

Implicit equations are quite useful in that you can plug in a trial value into g(Xik), get a 

result, plug in a modified value depending on the result, etc., and iterate into a solution.  

The downside here is that equation (27) is very non-linear but it only involves looping 

over the roll call votes cast by the i
th

 legislator.  I will discuss this in more detail below. 

 The natural log of the Posterior Distribution shown in equation (16) is: 

ij

p q 2
C

i jy jn ij

i=1 j=1 1

p q p q q

ijc i jy jn

i=1 j=1 i 1 j 1 j 1

ln (X ) (O ) (O ) P

                            lnΦ βψ ln (X ) ln (O ) ln (O )







  

 
      

 

        

 

   

      (28) 

This is the same as the natural log of the Likelihood function shown in equation (19) with 

the addition of the natural logs of the prior distributions.  Note that I do not have a prior 

distribution for β.   

 
 

p q
ijc

ijc

i 1 j=1 ijc

f



 
  

   
                                   (29) 

 
 

   

s s
2 2
ijkc ijkb

k=1 k=1

1 1
q d d

2 2ijc ik
ik jkc ik jkb 2

j 1ik ijc

f X
e X O e X O

X

   
    
   
   



             
      

   (30) 
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 
 

 

s
2
ijkc

k=1

1
p d

2ijc jkc

ik jkc 2
i 1jkc ijc

f O
e X O

O

 
 
 
 



         
      

   (31) 

 
 

 

s
2
ijkb

k=1

1
p d

2ijc jkb

ik jkb 2
i 1jkb ijc

f O
e X O

O

 
 
 
 



          
      

   (32) 

 These derivatives are the same as those shown in equations (21), (22), and (23) 

with the addition of the final terms from differentiating the normal prior distributions -- 

jk jkik

2 2 2

ZX
, ,  and 


  
  

-- respectively.  I do not subscript the variance terms – the ζ
2
„s – 

deliberately.  I believe we will want to experimentally determine the best values for these.  

For example, the variance for the prior of a midpoint probably should be smaller than the 

variance for the prior of a legislator point.   

The potential role these variance terms may play is best illustrated by looking at 

the implicit equation for a legislator coordinate: 

 
 

 
 

s s

ijkc ijkb

k=1 k=1

q d d
ijc

jkc jkb

j ijc

ik ik
q

ijc

ijc

j=1 ijc

f βψ
e O e O

Φ βψ

X g*(X )
f βψ

ψ
Φ βψ

   
    
   
   



      
    

 
 
  

 
 





2 21 1

2 2

1

2

1

      (33) 

Equation (33) is the same as equation (27) except for the 
2

1
 in the denominator.  Now if 

the prior distribution was uninformative, that is, if ζ
2
 = 1000 or something similar, then 

the prior distribution has no impact on the derivatives and hence no impact on any 

gradient style algorithm used to find the maxima of the parameters.  However, this is an 
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unsatisfactory result for our purposes because we need to use the priors to constrain the 

distribution of the estimated parameters.   

 In this regard, note that
 
 

q
ijc

ijc

j=1 ijc

f βψ
ψ q

Φ βψ
 .  Furthermore, suppose the legislator 

makes no voting errors then all the 
 
 

ijc

ijc

f 

 
terms are less than 0.8.  Indeed, if the 

average probability is around 0.7 – Φ(.5)=0.69 -- then 
 

 

f .5
.5

.5



 and if β=2.5 then the 

ijcψ 0.2  so that 
 
 

q
ijc

ijc

j=1 ijc

f βψ
ψ 0.10q

Φ βψ
  .  Suppose the legislator was to the exterior of 

all the midpoints, that is ik jkmX Z   j   so that jkc jkbO O   j  .  This will tend to produce 

a “sag”.  To see this note that – ignoring the 
2

1
 in the denominator – for each j the 

numerator term is larger than its corresponding denominator term: 

s s s s

ijkc ijkb ijkc ijkb

k=1 k=1 k=1 k=1

d d d d

jkc jkb ijce O e O e e ,   j

       
          
       
       

      
         
   
   

2 2 2 21 1 1 1

2 2 2 2
0  

Because 

s s

ijkc ijkb

k=1 k=1

d d

e e

   
    
   
   
 



2 21 1

2 2
 and jkc jkbO O .  So with respect to equation (27) -- the 

implicit equation without 
2

1
-- g(Xik) > 1.  Now, let Xik increase in positive magnitude.  

The 
 
 

ijc

ijc

f 

 
terms become smaller and smaller and approach zero; 

s s

ijkc ijkb

k=1 k=1

d d

e e

   
    
   
   
 



2 21 1

2 2
 and ikg(X ) 1 .  In other words, the quasi-concave form of the 
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utility function keeps Xik from “blowing up” because there is an inflection point some 

distance from the “sensible boundary” of the voting space (Poole, 2005, p. 97).  This is a 

serious problem because the legislator point for a “perfect” legislator drifts out from the 

other legislators and creates a sizeable “sag” that lacks face validity in the analysis of 

real-world legislatures. 

 Note that perfect legislators in the interior of the space are not a problem.  This is 

due to the simple fact that they are in the midst of midpoints and if Xik crosses over any 

midpoint then the legislator is no longer perfect!  The denominator term 
 
 

q
ijc

ijc

j=1 ijc

f βψ
ψ

Φ βψ
  

will be positive but not as small as that for a perfect legislator near the rim of the space 

because the 

s

ijkb

k=1

d

e

 
 
 
 
 21

2
 terms will not be as small relative to the 

s

ijkc

k=1

d
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2
 terms and the 

numerator can be positive or negative because the jkcO  can be to the right or to the left of 

the legislator coordinate.   

The 
2

1
 in the denominator of equation (33) will act as a break on the outward 

drift of a “perfect” legislator near the rim of the space for the very simple mathematical 

reason that it is fixed in magnitude vis a vis the
 
 

q
ijc

ijc

j=1 ijc

f βψ
ψ

Φ βψ
 term which can become 

quite small.  What the value of ζ
2
 should be will have to be determined by 

experimentation during the first phase of development of the new algorithm in C.  My 

intuition is that ζ
2
=1 will probably do the trick.  Note that this assumption expresses our 

belief that legislators tend to be within a multivariate normal distribution with variance-
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covariance matrix Is.  There may be some interaction between this ζ
2
 and those for the 

assumed distributions of the roll call parameters.  We shall see. 

 


