
Singular Value Decomposition 

 

Theorem I (Singular Value Decomposition) 

 Let A be a p by n matrix of real elements (not all zeroes) with p ≥ n.  Then there is 

a p by p orthogonal matrix U, an n by n orthogonal matrix V, and a p by n matrix Λ such 

that 

 
A = UΛV′      and      U′AV = Λ 

where 

Λ = ⎥⎦
⎤

⎢⎣
⎡Λ

0
n  

 
and U′U = UU′ = Ip, V′V = VV′ = In, where Ip and In are p by p and n by n identity 

matrices respectively.  Λn  is an n by n diagonal matrix and 0 is a p-n by n matrix of 

zeroes.  The diagonal entries of Λn are non-negative with exactly s entries strictly positive 

(s ≤ n). 

 Theorem II – the famous Eckart-Young Theorem – solves the general least 

squares problem of approximating one matrix by another of lower rank.  Geometrically, 

suppose the matrix is a set of p points in an n-dimensional space and we wish to find the 

best two-dimensional plane through the p points such that the distances from the points to 

the surface of the plane are minimized.  Technically, let A be a p by n matrix of rank 15 

and let B be a p by n matrix of rank 2.  Given A, the problem is to find the matrix B such 

that  is minimized. (
p n 2

ij ij
i 1 j 1

a b
= =

−∑∑ )

Theorem II was never explicitly stated by Eckart and Young.  Rather, they use 

two theorems from linear algebra (Theorem I was the first) and a very clever argument to 
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show the truth of their result.  Later, Keller (1962) independently rediscovered the 

Eckart-Young result (Theorem II). 

 

Theorem II (Eckart and Young) 

 Given a p by n matrix A of rank r ≤ n ≤ p, and its singular value decomposition, 

UΛV′, with the singular values arranged in decreasing sequence 

    λ1 ≥ λ2 ≥ λ3 ≥ … λn  ≥ 0  

then there exists a p by n matrix B of rank s, s ≤ r, which minimizes the sum of the 

squared error between the elements of A and the corresponding elements of B when 

     B = UΛsV′ 

where the diagonal elements of Λs are 
 

λ1 ≥ λ2 ≥ λ3 ≥ … λs > λs+1 =  λs+2 = … = λn = 0  

 
 Theorem I states that every real matrix can be written as the product of two 

orthogonal matrices and one diagonal matrix.  Theorem II states that the least squares 

approximation in s dimensions of a matrix A can be found by replacing the smallest n-s 

roots of Λ with zeroes and remultiplying UΛV′. 

 Because the lower p-n rows of Λ are all zeros, it is convenient to discard them and 

work only with the n by n diagonal matrix Λn .  In addition, the p-n eigenvectors in U 

corresponding to the p-n lower rows of Λ may also be discarded.  With these deletions of 

redundant rows and columns, U is a p by n matrix, Λ is an n by n diagonal matrix, and V 

is an n by n matrix.  Hence U′U = V′V = VV′ = In.  A decomposition according to 

Theorem I will be assumed to be in this form.  
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Example 
 

1 2 1 4
3 2 1 3
4 3 1 4

A U
2 1 3 1
1 5 2 2
1 2 2 3

= = V ' =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1−

Λ  

.380 .120 .439 .565

.404 .345 .057 .215 11.485 0 0 0 .444 .558 .324 .62

.545 .429 .051 .432 0 3.270 0 0 .556 .65

.265 .068 .884 .215 0 0 2.653 0

.446 .817 .142 .321 0 0 0 2.089

.355 .102 .004 .546

− −
− − − − −
− − − −
− −
− − − −
− −

⎡ ⎤
⎢ ⎥ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎣ ⎦

4 .351 .374
.435 .277 .732 .444
.512 .428 .485 .526

−
− −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Note that we can write as the sum: Λ
 

11.485 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 3.270 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2.653 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.089

+ + +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
 

Which in symbols we can write as: 

1 2 3Λ = Λ + Λ + Λ + Λ4  
 
Hence, 
 

[ ]1 2 3 4 1 2 3 4U V' U V' U V' U V' U V' U V'Α = Λ = Λ + Λ + Λ + Λ = Λ + Λ + Λ + Λ  
 
Now, observe that 

( )[ ]1
'

.380

.404

.545
U V 11.485 .444 .558 .324 .621

.265

.446

.355

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−

Λ = − − − −⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥
−⎢ ⎥⎣ ⎦

 

 
Because of the columns of zeroes in 1Λ  
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To see this, note that 
 

.380 .120 .439 .565 .380 0 0 0

.404 .345 .057 .215 11.485 0 0 0 .404 0 0 0

.545 .429 .051 .432 0 0 0 0 .545 0 0 0
(11.485)

.265 .068 .884 .215 0 0 0 0 .265 0 0

.446 .817 .142 .321 0 0 0 0

.355 .102 .004 .546

− − −
− − −
− − − −

=
− − −
− − − −
− −

⎡ ⎤
⎢ ⎥ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

U 10
.446 0 0 0
.355 0 0 0

= Λ

−
−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
 
because the columns of zeroes cancel.  When 1UΛ  is multiplied through V’ the 
corresponding rows of V’ are multiplied by zero so they disappear as well.  This fact 
allows us to write V’ as the sum: 1UΛ
 

1 1 1 2 2 2 3 3 3 4 4
' ' 'A U V' u v u v u v u v= Λ = λ + λ + λ + λ 4

'  
 
If you want a matrix B of rank 3 that is the best least squares approximation to A, then it is  
 

21 1 1 2 2 3 3 3B u v ' u v ' u v '= λ + λ + λ  
 
The residual matrix is  
 

4 4 4E A B u v '= − = λ  
 
And the sum of the squared residuals is 2

4λ  (recall that the sum of squares of all the 

elements in A is . In this example, 

 

2 2 2
1 2 3λ + λ + λ + λ2

4

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2(1 2 1 4 3 2 1 3 4 3 1 4 2 1 3 1 1 5 2
2 2 2 2 2 2 2 2 22 1 2 2 3 ) 154 (11.485 3.270 2.653 2.089 )

+ + + + + + + + + + + + + + + + + +

+ + + + + = = + + +
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