Solving the Metric Similarities Problem

Recall that our g by s matrix of stimuli coordinates is:
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And the g by q matrix of squared distances between the g stimuli is:
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If there is no error then the solution is:
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2. Compute the eigenvalue-eigenvector decomposition of Y:
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3. Set Z=UA?
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Note that, without loss of generality you can assume that Z=| = |=
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If there is error then the solution is somewhat harder.
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function to:
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Rearranging:
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Therefore:
L1 d,
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Note that the solution is in the form:

z=f(y,2)
That is, the solution for z is a value such that when it is plugged into f(y,z) it produces
itself!

Define:
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So that equation (3) can be re-written as:
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Using equation (4), note that the point zj , is:

z.. = jm, =zm+i(z.—zm) (6)
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Where z,=| "~ |and z, = " | are points and -2 is a scalar. Equation (6) is
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the basic equation of a line that passes through z; and z,! The general formula for a
line equation is:

Y (H)=A+t(B-A) (7)
Where A and B are points and t is a scalar. Note that if 0<t<1 then equation (7) defines a

line that runs between points A and B.

Once specific values are plugged into equation (6) then the solution for the point
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z;=| | issimply the centroid of the q z; m points!
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Finally, note that the squared distance between the points z; and zjm is:
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So that the squared error is represented directly on the s-dimensional hyperplane (see

below).
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FIGURE |
Parametric equation of a straight line,



