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 The purpose of this supplement is to show more detail about the cutting plane 

procedure detailed in Chapter 3.  Specifically, to more fully characterize the use of the 

principle of least squares to move the cutting plane through the space of the legislators in 

order to maximize correct classification. 

 The voting example shown in Figure 3.8A of Chapter 3 is reproduced below.  

There are 12 legislators with 7 voting Nay and 5 voting Yea and the cutting line perfectly 

classifies the roll call vote.  Given the legislator ideal points and their choices on the roll 

call, the purpose of the cutting plane procedure is to find a cutting line that maximizes the 

correct classification on the roll call.  In terms of Figure 3.8A, the purpose is to find the 

cutting plane shown in the figure. 
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 The first step of the cutting plane procedure is to project the legislator points onto 

the current estimate of the cutting plane as illustrated in Figure 3.10A.  This produces the 

set of points shown in Figure 3.10B.  The next step is to find the least squares line 

through the set of points shown in Figure 3.10B.  This has the effect of rotating the 

cutting plane towards the classification errors.   
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 Let Ψ be the p by s matrix of points projected onto a cutting plane as illustrated in 

Figure 3.10B.  Technically, p > s ≥ 2 and the rank of Ψ is s.  The least squares problem is 

to find a plane of rank s-1 through the points in Ψ such that the sum of the squared 

distances from the points in Ψ to their orthogonal projections on the plane – the p by s 

matrix B of rank s-1 – is minimized.  Following the notation of Chapter 3, the equation of 

this plane can be written as: 

     Nj′Y = α                                     (1) 
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Where Nj is the s by 1 normal vector to the plane such that Nj′Nj = 1, Y is an s by 1 

vector of any point on the plane, and α is a constant.  In Figure 3.10C “Nj (new)” is the 

normal vector, Nj , for the least squares line.  Hence, for any point in B (row of B), Bi; 

     Nj′Bi = α                                     (2) 

The points along the least squares line in Figure 3.10C are the Bi‘s.  The orthogonal 

projection of a point in Ψ (row of Ψ), Ψi (the “N” and “Y” tokens in Figure 3.10C), onto 

the plane produces the point Bi.  The equation for this projection is:  

    Bi = Ψi + (α - wi)Nj                                (3) 

Where Nj′Ψi = wi.    
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 The Ψi points in Figure 3.10C are projected orthogonally onto the least squares 

line.  In contrast, in a simple linear regression problem one of the dimensions is the 

dependent variable and the projection to the regression line – quite literally the residual – 

is parallel to the dimension representing the dependent variable.  For example, in Figure 

3.10D (not shown in Chapter 3) the second dimension – denoted as X2 – is the dependent 

variable and the first dimension is the independent variable.  In a simple OLS the sum of 

squared error is equal to the sum of squared distances from each observation to the 

regression line.  The projection of the point representing an observation is parallel to the 
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dimension representing the dependent variable.  The sum of squared distances from the 

OLS projection shown in Figure 3.10D is not the same as the sum of squared distances in 

Figure 3.10C.  To restate the basic difference, there is no “dependent” variable but it is 

still a least squares problem.  

 

 

 The sum of the squared orthogonal projections in Figure 3.10C is: 

( ) ( )
p ps s

ik ik i jk
i k i k

2
b w N

= = = =

 ψ − = α − = ∑∑ ∑∑
1 1 1 1

2  



 8

 ( ) ( ) ( )
p p ps

2
jk i i i

k 1 i 1 i 1 i 1

2 2 2N w w w
= = = =

  α − = α − = − α 
 
∑ ∑ ∑ ∑          (4) 

Hence for the sum of squared distances to be a minimum it must be the case that α= w , 

where w  is the mean of the wi.  However, geometrically, this is equivalent to the least 

squares line/plane passing through the means of the columns of Ψ; namely 
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where µ is the s by 1 vector of the column means of Ψ.   

 Substituting equation (5) into equation (4) and factoring out the normal vector 

yields: 
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This expression can be rewritten as the matrix equation: 

p p -J -J * *
j j j jN N N N′ ′′ ′ ′ ′   Ψ µ Ψ µ = Ψ Ψ                  (7) 

where Ψ* = Ψ - Jpµ′ , Ψ and Ψ* are p by s matrices, Jp is a p by 1 vector of ones, and µ 

is the s by 1 vector of column means of Ψ.   

 Hence, by equation (7) the least squares problem is to find an s by 1 vector Nj that 

minimizes (7) subject to the constraint that Nj′Nj = 1.  The solution for Nj is a 

straightforward application of the Eckart-Young (1936) theorem.  To see this, let the 

singular value decomposition of Ψ* be UΛV′ where U is a p by s orthogonal matrix, Λ is 

an s by s diagonal matrix with the singular values in decreasing order on the diagonal, V 

is an s by s orthogonal matrix, U′U = V′V = VV′ = Is, and Is is an s by s identity matrix.  

Substituting into equation (7): 
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  * * 2
j j j j j jN N N V U U V N N V V N′′ ′ ′ ′ ′ ′Ψ Ψ = Λ Λ = Λ                 (8) 

Note that setting Nj equal to the sth column of V, Vs produces: 

2 2
s s sV V V V′ ′Λ = λ                            (9) 

that is, setting Nj = Vs produces a sum of squared distances from the orthogonal 

projections in Figure 3.10C equal to the square of the sth singular value of Ψ*.  This is 

the solution from the Eckart-Young theorem.  To see why this is the solution consider the 

relationship between the points in Ψ and their projections on the least squares line – the 

matrix B shown in equation (3).  Subtracting the column means from Ψ to produce Ψ* 

and subtracting these same means from the corresponding columns of B produces a graph 

identical to Figure 3.10C except that the center of the coordinate axes is moved.  This 

cannot affect the sum of the squared orthogonal projections.  To see this, let B* = B - 

Jpµ′ and let wi* = Nj′Ψi*.  Because α=0, equation (3) becomes: 

    Bi* = Ψi* - wi*Nj                                (10) 

Equation (4) becomes: 

( ) ( )
p ps

i
i 1 k 1 i 1

ik ik
* * *2 2

b w
= = =

ψ − =∑∑ ∑ = * *
j jN N′′Ψ Ψ              (11)  

which is equivalent to equation (8). 

 Equation (11) is an instance of the problem considered by Eckart and Young 

(1936).  Namely, given a p by s matrix Ψ* of rank s, find a p by s matrix B* of rank s-1 

such that equation (11) is minimized.  The solution is to compute the singular value 

decomposition of Ψ*, UΛV′, and then set the sth (smallest) singular value on the 

diagonal of Λ, λs , equal to zero and then remultiplying.  That is, let Λ# be the same as Λ 

expect for the substitution of λs with 0, then the solution is: 
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B* = UΛ#V′                             (12) 

Therefore, the least squares line is: 

     B = B* + Jpµ′                           (13) 

and the normal vector is: 

     Nj = Vs                                      (14) 

Where Vs is the sth column of V. 

  

  


