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 Psychometrics is a subfield of Psychology devoted to the development, 

evaluation, and application of mental tests of various kinds.  These mental tests attempt to 

measure knowledge, attitudes, personality traits, and abilities.  Psychometrics has its 

origins in the work of Sir Francis Galton (1822 – 1911), Karl Pearson (1857 – 1936), and 

Charles Spearman (1863 – 1945) in the late 19th and early 20th centuries.  Galton’s most 

famous work was Hereditary Genius (1869) in which he studied “illustrious” intellects 

and their families.  His biographical data of the descendants of these illustrious intellects 

showed “regression to the mean” for a number of mental and physical characteristics that 

he regarded as important.  Much of his work in the latter part of the 19th Century was 

devoted to eugenics.  Galton was interested in measurement and developed a measure of 

co-relation which influenced the development of the correlation coefficient by Karl 

Pearson.  He and Karl Pearson founded the journal Biometrika in 1901. 

Galton was a major influence on both Karl Pearson and Charles Spearman.  

Pearson began his professional life as an attorney from 1881 to 1884 but in 1884 he was 

appointed as a professor of applied mathematics and mechanics at University College, 

London.  He became professor of eugenics in 1911 and was the editor of Biometrika from 

1902 to 1936.  Pearson invented the product moment correlation coefficient which is 

universally denoted as r and he should also be credited with the invention of Principal 
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Components Analysis (what we now would think of as straightforward 

eigenvalue/eigenvector decomposition).  Pearson called it “the method of principal axes” 

and states the problem quite succinctly:  “In many physical, statistical, and biological 

investigations it is desirable to represent a system of points in plane, three, or higher 

dimensioned space by the ‘best-fitting’ straight line or plane” (1901, p. 559).  

Remarkably, this also describes the essence of the famous Eckart-Young theorem (Eckart 

and Young, 1936, see below) which is the foundation of general least squares problems 

(Lawson and Hanson, 1974).   

Charles Spearman came late to the study of psychology.  He began his 

professional career as an officer in the British army and he served in the 1885 Burmese 

war and in the Boer War in South Africa.  He was 43 years old in when he earned his 

Ph.D. in psychology at Leipzig in 1906.  He held chaired professorships at University 

College London from 1907 to 1931.  

While still a graduate student he published his famous 1904 paper that used factor 

analysis to analyze a correlation matrix between test scores of twenty-two English high 

school boys for Classics, French, English, Math, Pitch, and Music.  This correlation 

matrix is shown in Table 1. 

Table 1:  Spearman’s 1904 (Rank Order) Correlation Matrix 

Classics   1.00                                    
French      .83   1.00                             
English     .78    .67   1.00                      
Math        .70    .67    .64   1.00               
Pitch       .66    .65    .54    .45   1.00        
Music       .63    .57    .51    .51    .40   1.00 

 This correlation matrix is historic for two reasons.  First, Spearman computed a 

form of rank-order correlation between each pair of skills across the twenty-two school 

boys.1  Second, he applied factor analysis to the matrix of correlations to extract a 
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common or general (the “g” factor) factor from the matrix.  His method of extracting the 

g factor was based on his method of “tetrad differences”.  A tetrad difference is actually 

the determinant of a 2 by 2 matrix and if there is only one factor then these differences 

should all be close to zero.  For example, using English and Math, the tetrad difference is 

.78*.67 - .67*.70 or .054.  If the tetrad differences are all close to zero then the matrix 

only has one factor (rank of one).  Spearman derived an elaborate formula for extracting 

this g factor from a correlation matrix.2  The notorious Cyril Burt tried to claim that he 

invented factor analysis after Spearman’s death.  However, there is no question that 

Spearman was the inventor (Lovie and Lovie, 1993). 

 Lewis Leon Thurstone (1887 – 1955) thought Spearman’s one factor theory of 

intelligence was wrong.  Thurstone was a polymath who earned an engineering degree at 

Cornell in 1912 and a PhD in Psychology at Chicago in 1917 where he became a 

professor from 1924 to 1952.  While an engineering student he invented a flicker-free 

motion picture projector and briefly worked as an assistant to Thomas Edison in 1912.  

He made many fundamental contributions to psychological science the most important of 

which were multiple factor analysis and the law of comparative judgment.   

Thurstone generalized Spearman’s tetrad differences approach to examine higher 

order determinants and succeeded in developing a method for extracting multiple factors 

from a correlation matrix (Thurston, 1931; 1947).  Thurstone’s theory of intelligence 

postulated seven rather than one primary mental ability and he constructed tests specific 

to the seven abilities:  verbal comprehension, word fluency, number facility, spatial 

visualization, associative memory, perceptual speed, and reasoning (Thurstone, 1935).  
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 Thurstone also developed the law of comparative judgment.  Thurstone’s law is 

more accurately described as a measurement model for a unidmensional subjective 

continuum.  Subjects are asked to make a series of n(n-1)/2 pairwise comparisons of n 

stimuli.  It is assumed that a subject’s response reflects the momentary subjective value 

associated with the stimulus, and that the probability distribution of these momentary 

values is normally distributed.  It is then possible to recover the underlying continuum or 

scale by essentially averaging across a group of subjects.  If the variances of the stimuli 

(the discriminal dispersions) on the underlying scale are the same (Case 5 of the model), 

this is equivalent to the requirement of parallel item characteristic curves in the Rasch 

model.  Case 5 of Thurstone’s method should yield essentially the same results as the 

Rasch model for dichotomous data (Andrich, 1978).   

 Although Thurstone developed multiple factor analysis it was Harold Hotelling 

(1895 – 1973) who gave principal components a solid statistical foundation (Hotelling, 

1933).  Hotelling had an eclectic background.  He received a BA in journalism in 1919 

from the University of Washington and a Ph.D. in mathematics from Princeton in 1924.  

Reflecting this eclectic background, Hotelling made fundamental contributions in both 

economics and statistics.  In economics Hotelling’s famous 1929 paper on the stability of 

competition is generally recognized as the beginnings of the spatial (geometric) model of 

voting (see below).  It introduced the simple but profound idea that if there are two stores 

on a street then it is in the interest of each store to locate in the middle (the median 

walking distance) of the street where each gets one half of the market.  Two years later in 

a 1931 paper Hotelling laid out what has since become labeled “confidence intervals” in 

an analysis of the use of the Student’s t distribution for hypothesis testing. 
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 Hotelling was one of a number of distinguished mathematicians and physicists 

who made fundamental contributions to the development of psychometrics in the 1930s 

and 1940s.  As fate would have it a number of these contributors were at the University 

of Chicago at the same time as Thurstone.  Thurstone was the main force behind the 

founding of the Psychometric Society and its journal Psychometrika (Takane, 2004).  

Carl H. Eckart (1902 – 1973), a distinguished quantum physicist (Munk and 

Preisendorfer, 1976), and Gale Young, an applied mathematician, published their 

landmark paper “The Approximation of One Matrix by Another of Lower Rank” in the 

very first issue of Psychometrika in 1936.  Formally, the Eckart-Young theorem is: 

 Given a n by m matrix A of rank r ≤ m ≤ n, and its singular value decomposition, 

UΛV′, where U an n by m matrix, V is an m by m matrix such that U′U=V′V=VV′=I, 

and Λ is an m by m diagonal matrix with the singular values arranged in decreasing 

sequence on the diagonal 

    λ1 ≥ λ2 ≥ λ3 ≥ … λm  ≥ 0  

then there exists an n by m matrix B of rank s, s ≤ r, which minimizes the sum of the 

squared error between the elements of A and the corresponding elements of B when 

     B = UΛsV′ 

where the diagonal elements of Λs are 
 

λ1 ≥ λ2 ≥ λ3 ≥ … λs > λs+1 = λs+2 = … = λm = 0  

 
The Eckart-Young theorem states that the least squares approximation in s 

dimensions of a matrix A can be found by replacing the smallest m-s roots of Λ with 

zeroes and remultiplying UΛV′.  This Theorem was never explicitly stated by Eckart and 
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Young.  Rather, they use two theorems from linear algebra (the key theorem being 

singular value decomposition3) and a very clever argument to show the truth of their 

result.  Later, Keller (1962) independently rediscovered the Eckart-Young theorem. 

 The Eckart-Young theorem provides a formal justification for the selection of the 

number of factors in a factor analysis (as well as many other general least squares 

problems).  The Eckart-Young theorem along with the results of Gale Young and Alston 

Householder (1904 - 1993) published in Psychometrika in 1938 provided the foundations 

for classical multidimensional scaling.   

Multidimensional scaling (MDS) methods represent measurements of similarity 

between pairs of stimuli as distances between points in a low-dimensional (usually 

Euclidean) space.  The methods locate the points in such a way that points corresponding 

to very similar stimuli are located close together while those corresponding to very 

dissimilar stimuli are located further apart.  Warren Torgerson (1924 –1997) in a 1952 

Psychometrika paper showed a simple method of MDS based upon the work of Eckart 

and Young (1936) and Young and Householder (1938) (see also Torgerson, 1958).  The 

method is elegantly simple.  First, transform the observed similarities/dissimilarities into 

squared distances.  (For example, if the matrix is a Pearson correlation matrix subtract all 

the entries from 1 and square the result.)  Next, double-center the matrix of squared 

distances by subtracting from each entry in the matrix the mean of the row, the mean of 

the column, adding the mean of the matrix, and then dividing by -2.  This has the effect 

of removing the squared terms from the matrix leaving just the cross-product matrix (see 

Gower, 1966).  Finally, perform an eigenvalue-eigenvector decomposition to solve for 

the coordinates.   
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For example, suppose there are n stimuli and let D be the n by n symmetric matrix 

of squared distances between every pair of the stimuli.  Let Z be the n by s matrix of 

coordinates of n points in an s-dimensional Euclidean space that represent the n stimuli 

and let Y be the n by n double centered matrix.  The elements of Y are: 

2 2 2 2
ij .j i. ..

ij i j

(d  - d  - d  + d )
y  =  = (z  - z) '(z  - z)

2−
 

where  is the mean of the jth column,  is the mean of the ith row,  is the mean of 

the matrix,  and are the s length vectors of coordinates for the ith and jth stimuli, 

and 

2
.jd 2

i.d 2
..d

iz jz  

z is the s length vector of means for the n stimuli on the s dimensions.  Without loss 

of generality the means can be set equal to zero so that the double-centered matrix is 

simply 

    Y = ZZ′  

Let the eigenvalue-eigenvector decomposition be UΛU′; hence the solution is: 

    Z= UΛ1/2 

 Torgerson’s method is very elegant but similarities/dissimilarities data are rarely 

measured on a ratio scale.  Indeed, it is very likely that data gathered from subjects is at 

best on an ordinal scale.  Roger Shepard (1958) argued that the relationship between the 

true distance between a pair of stimuli and the observed distance was exponential.  That 

is, if d is the distance between two stimuli then the reported similarity, δ, tends to be e-kd, 

where k (k > 0) is a scaling constant (Shepard, 1958; 1963, 1987; Gluck, 1991; Nofosky, 

1992; Cheng, 2000).  This is known as a response function.  Within Psychology, surveys 

and experiments of how people make similarities and preferential choice judgments show 

that very simple geometric models appear to structure responses to these tasks (Shepard, 
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1987).  When individuals make a judgment of how similar two stimuli are, they appear to 

base the judgment upon how close the two stimuli are in an abstract psychological space 

(Nosofsky, 1984; 1992; Shepard, 1987; Gluck, 1991).  The dimensions of these 

psychological spaces correspond to the attributes of the stimuli.  A strong regularity is 

that these psychological spaces are low dimensional – very rarely above two dimensions 

– and that either the stimuli judgments are additive – that is, a city-block metric is being 

used – or simple Euclidean (Garner, 1974; Shepard 1987; 1991; Nosofsky, 1992).  

Shepard’s belief that response functions were exponential led him to develop 

nonmetric multidimensional scaling in which distances are estimated that reproduce a 

weak monotone transformation (or rank ordering) of the observed dissimilarities 

(Shepard, 1962a,b).  Graphing the “true” (that is, the estimated or reproduced) distances – 

the d’s – versus the observed dissimilarities – the δ’s – revealed the relationship between 

them.  This became known as the “Shepard diagram.”   

 Shepard’s program worked but the key breakthrough was Joseph Kruskal’s idea 

of monotone regression that lead to the development of a powerful and practical 

nonmetric MDS program (Kruskal, 1964a,b; 1965).  By the early 1970s this was known 

under the acronym KYST (Kruskal, Young, and Seery, 1973) and is still in use today. 

 MDS methods can be seen as evolving from factor analysis and Thurstone’s 

unidimensional scaling method with the key difference being that MDS methods are 

applied to relational data, that is, data such as similarities and preferential choice data 

that can be regarded as distances.  At the same time that MDS methods were evolving 

Louis Guttman (1916 – 1987) during the Second World War developed scalogram 

analysis or what is more commonly known as Guttman Scaling (Guttman, 1944, 1950).  
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A Guttman scale is the basis of all modern skills based tests.  It is a set of items 

(questions, problems, etc.) that are ranked in order of difficulty so that those who answer 

correctly (agree) on a more difficult (or extreme) item will also answer correctly (agree) 

will all less difficult (extreme) items that preceded it.4  Rasch analysis (more broadly, 

item response theory) is essentially a sophisticated form of Guttman scalogram analysis.  

They are techniques for examining whether a set of items is consistent in the sense that 

they all measure increasing/decreasing levels of some unidimensional attribute (e.g., 

mathematical ability; racial prejudice, etc). 

 At the same time that Torgerson was developing classical scaling and Guttman 

was developing scalogram analysis, Clyde Coombs (1912 – 1988) developed unfolding 

analysis (Coombs, 1950; 1952; 1958; 1964).  Coombs was a student of Thurstone’s and 

received his Ph.D. from the University of Chicago in 1940.  After World War II Coombs 

became interested in preferential choice problems where the data consists of subjects’ 

rank orderings of stimuli (Tversky, 1992).  Coombs came up with the idea of an ideal 

point and a single-peaked preference function to account for the observed rank orderings.  

The idea was to arrange the individuals’ ideal points and points representing the stimuli 

along a scale so that the distances between the ideal points and the stimuli points 

reproduced the observed rank orderings.  Coombs called this an unfolding analysis 

because the researcher must take the rank orderings and “unfold” them.  An individual’s 

rank ordering is computed from her ideal point so that the reported ordering is akin to 

picking up the dimension (as if it were a piece of string) at the ideal point so that both 

sides of the dimension fold together to form a line with the individual’s ideal point at the 

end.  
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 Unfolding analysis deals with relational data and is therefore an MDS method.  

Both unfolding analysis and scalogram analysis deal with individual’s responses to a set 

of stimuli.  But Guttman’s model is very different from the unfolding model.  In terms of 

utility theory unfolding analysis assumes a single-peaked (usually symmetric) utility 

function.  That is, utility (the degree of preference) declines with distance from the 

individual’s ideal point.  In contrast, Guttman scaling is based on a utility function that is 

always monotonically increasing or decreasing over the relevant dimension or space.  

Above some threshold the individual always responds Yes/correct, and below the 

threshold the individual always responds No/incorrect.  The counterpart to an ideal point 

is the position on the scale where the individual’s responses switch from Yes/correct to 

No/incorrect.   

Interestingly, these two very different models are observationally equivalent in 

the context of Parliamentary voting (Weisberg, 1968; Poole, 2005).  In the unfolding 

model there are two outcomes for every Parliamentary motion – one corresponding to 

Yea and one corresponding to Nay.  Legislators vote for the option closest to their ideal 

points.  In one dimension this forms a perfect scalogram (Weisberg, 1968).  Hence, 

Guttman scaling methods and their item response theory (IRT) parametric descendants 

can be used to analyze Parliamentary (binary choice) data. 

 By the mid 1950s factor analysis, Guttman scalogram analysis, and Thurstone’s 

scaling methods had been developed and began to influence political scientists.  Duncan 

MacRae’s pathbreaking work on congressional voting (MacRae, 1958; 1970) utilized 

both factor analysis and unidimensional scaling methods at a time when computing 

resources were very primitive.  MacRae used factor analysis to analyze correlation 
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matrices computed between roll calls (usually Yule’s Q’s) and correlation matrices 

between legislators to uncover the dimensional structure of roll call voting.  By analyzing 

the Yule’s Q results MacRae was able to construct unidimensional scales for specific 

issue areas.  MacRae proposed the model of roll call voting that Howard Rosenthal and I 

implemented as NOMINATE -- namely, ideal points for legislators and two policy 

outcomes per roll call, one for Yea and one for Nay.  There is no doubt that MacRae 

would have estimated this model if computing resources in the 1950s had been up to the 

task. 

 Herbert Weisberg in his 1968 Ph.D. dissertation (Weisberg, 1968) systematically 

detailed the interrelationships of existing multivariate methods (most of which came from 

psychology) that had been used to analyze roll call voting.  In his analysis of factor 

analysis, Guttman scaling, similarities analysis, and cluster analysis Weisberg showed the 

observational equivalence of the ideal point proximity model with the Guttman scalogram 

dominance model, and outlined a general framework for analyzing roll call voting.   

In the late 1960s and early 1970s nonmetric MDS began to be used in political 

science.  Beginning in 1968 feeling thermometers were included in the National Election 

Studies conducted by the University of Michigan.  A feeling thermometer measures how 

warm or cold a person feels toward the stimulus; the measure ranges from 0 – very cold 

and unfavorable opinion – to 100 – very warm and favorable opinion -- with 50 as a 

neutral point.  In 1968 respondents were asked to give feeling thermometer ratings to the 

presidential candidates George Wallace, Hubert Humphrey, and Richard Nixon, along 

with their vice presidential running mates and six other political figures.  Herbert 

Weisberg and Jerrold Rusk (1970) computed Pearson correlations between every pair of 
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political figures across the respondents and then used Kruskal’s nonmetric MDS 

procedure (Kruskal, 1964a,b) to recover a candidate configuration.  This configuration is 

shown in the figure below. 

 

The availability of the feeling thermometer data led to efforts to apply unfolding 

methods to them directly.  In these models the thermometers were regarded as inverse 

distances.  For example, by subtracting them from 100 these transformed scores could be 

treated as distances between points representing the candidates and points representing 

the respondents.  Techniques to perform unfolding analyses were developed by 

psycholometricians in the 1960s (Chang and Carroll, 1969; Kruskal, Young, and Seery, 
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1973) but the first application of unfolding to thermometers was done by George 

Rabinowitz (1973; 1976) using his innovative line-of-sight method.  Almost at the same 

time Cahoon (1975) and Cahoon, Hinich, and Ordeshook (1976; 1978), using a statistical 

model based directly on the spatial model of voting (Davis and Hinich, 1966; 1967; 

Davis, Hinich, and Ordeshook, 1970; Enelow and Hinich, 1984), also analyzed the 1968 

feeling thermometers.  Later Poole and Rosenthal (1984), and Brady (1990) developed 

unfolding procedures that they applied to thermometer scores.  Poole (1981; 1984; 1990) 

and Poole and Daniels (1985) also applied an unfolding procedure to interest group 

ratings of members of Congress. 

In the 1980s political scientists began combining techniques from econometrics 

and statistics with approaches developed by psychometricians.  Henry Brady made 

contributions to the statistical foundations of nonmetric MDS (Brady, 1985a) as well as 

methods for and problems with the analysis of preferences (Brady, 1985b; 1989; 1990).  

Poole and Rosenthal combined the random utility model developed by economists 

(McFadden, 1976), the spatial model of voting, and alternating estimation methods 

developed in psychometrics (Chang and Carroll, 1969; Carroll and Chang, 1970; Young, 

de Leeuw, and Takane, 1976; Takane, Young, and de Leeuw, 1977)5 to develop 

NOMINATE, an unfolding method for parliamentary roll call data (Poole and Rosenthal, 

1985; 1991; 1997; Poole, 2005).   

The NOMINATE model is based on the spatial theory of voting.  Legislators have 

ideal points in an abstract policy space and vote for the policy alternative closest to their 

ideal point.  Each roll call vote has two policy points – one corresponding to Yea and one 

to Nay.  Consistent with the random utility model, each legislator’s utility function 
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consists of (1) a deterministic component that is a function of the distance between the 

legislator and a roll call outcome; and (2) a stochastic component that represents the 

idiosyncratic component of utility.  The deterministic portion of the utility function is 

assumed to have a normal distribution and voting is probabilistic.  An alternating method 

is used to estimate the parameters.  Given starting estimates of the legislator ideal points 

the roll call parameters are estimated.  Given these roll call parameters, new legislator 

ideal points are estimated, and so on.  Classical methods of optimization are used to 

estimate the parameters.6   

In the 1990s and the early 2000s the availability of cheap, fast computers made 

simulation methods for the estimation of complex multivariate models practical for the 

first time7 and these methods were fused with long standing psychometric methods.  

Specifically, Markov Chain Monte Carlo (MCMC) simulation (Metropolis and Ulam, 

1949; Hastings, 1970; Geman and Geman, 1984; Gelfand and Smith, 1990; Gelman, 

1992) within a Bayesian framework (Gelman, Carlin, Stern, and Rubin, 2000; Gill, 2002) 

can be used to perform an unfolding analysis of parliamentary roll call data.  The general 

Bayesian MCMC method was introduced into Political Science by Andrew Martin and 

Kevin Quinn (Schofield, Martin, Quinn, and Whitford, 1998; Quinn, Martin, and 

Whitford, 1999; Martin and Quinn, 2002; Quinn and Martin, 2002; Martin, 2003; Quinn, 

2004) and Simon Jackman (2000a; 2000b; 2001; Clinton, Jackman, and Rivers, 2004).   

The primary application of Bayesian MCMC methods in political science has 

been to unfolding roll call data from legislatures and courts.  Like NOMINATE, the 

foundation is the spatial theory of voting and the random utility model.  This unfolding 

approach also uses an alternating structure only it consists of sampling from conditional 
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distributions for the legislator and roll call parameters.  Technically, this is alternating 

conditional sampling or the Gibbs sampler (Geman and Geman, 1984; Gelfand and 

Smith, 1990).  Thus far the Bayesian MCMC applications have used a quadratic 

deterministic utility function with most of the applications being one dimensional.  With 

a quadratic deterministic utility function the simple item response model (Rasch, 1961) is 

mathematically equivalent to the basic spatial model if legislators have quadratic utility 

functions with additive random error (Ladha, 1991; Londregan, 2000; Clinton, Jackman, 

and Rivers, 2004).  This has the effect of making the estimation quite straightforward as 

it boils down to a series of linear regressions. 

As this is written early in the 21st Century, the influence of psychometrics shows 

no sign of abating in political science.  The level of sophistication of psychometric 

applications in political science has steadily increased in the past 20 years.  The 

availability of fast computing has opened up whole new areas of research that were 

impossible to explore as late as the mid 1980s.  In addition, political science 

methodologists have successfully blended methods from statistics and econometrics with 

psychometrics to produce unique applications.  Heretofore “obscure” methods of 

estimation are being transmitted between neighboring disciplines much more rapidly than 

ever before by a younger generation of technically trained scholars.  This is an exciting 

time to be active in applied statistical methods in political science.  The coming 20 years 

should see equally important breakthroughs as massively parallel supercomputing 

becomes widely available and the information revolution increases the speed of 

transmission of statistical advances to cadres of ever better trained practitioners. 
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1 This rank-order correlation was not what is now known as the Spearman correlation 

coefficient.  He first used the correlation coefficient that would eventually be named for 

him in a paper published in 1906 (Lovie, 1995). 

2  This formula is detailed in Spearman (1927).  For a detailed discussion of Spearman’s 

work on the g factor see Jensen (1998). 

3 The SVD Theorem was stated by Eckart and Young (1936) in their famous paper but 

they did not provide a proof.  The first proof that every rectangular matrix of real 

elements can be decomposed into the product of two orthogonal matrices – U and V – 

and a diagonal matrix Λ, namely, UΛV′ as shown in the statement of the Eckart-Young 

theorem, was given by Johnson (1963).  Horst (1963) refers to the singular value 

decomposition as the basic structure of a matrix and discusses the mechanics of matrix 
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decomposition in detail in chapters 17 and 18.  A more recent treatment can be found in 

chapters 1 and 2 of Lawson and Hanson (1974). 

 
4 See van Schuur (1992, 2003) for a discussion of some Guttman-like models.  The 

multidimensional generalization of Guttman scaling is known as Multidimensional 

Scalogram Analysis (Lingoes, 1963).  For a survey see Shye (1978, chapters 9-11). 

5  See Jacoby (1991) for an overview and synthesis of the alternating least squares 

approach in psychometrics. 

6 The work of Heckman and Snyder (1997) is also based on the spatial model and the 

random utility model.  However, even though it uses principal components analysis, it is 

more accurately classified as an econometrics method than a psychometrics method. 

7 See Hitchcock (2003) for a short history of MCMC simulation. 

 28


