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The Geometry of Logit and Probit 
 

This short note is meant as a supplement to Chapters 2 and 3 of Spatial Models of 

Parliamentary Voting and the notation and reference to figures in the text below is to 

those two chapters. 

To recap, the normal vector is denoted as Nj and its reflection as -Nj .  The normal 

vector is perpendicular to the cutting plane.  The cutting plane in two dimensions is 

defined by the equation 

 Nj1(W1 – Zj1) + Nj2(W2 – Zj2) = 0   (1) 

where Nj1 and Nj2 are the components of the normal vector and (Zj1 , Zj2) is the midpoint 

of the roll call outcomes (see Figure 2.11).  Any point, (W1 , W2), that satisfies the 

equation above lies on the cutting plane.  For example, if the normal vector is (3, -2) and 

the roll call midpoint is (1, 0), then this produces the equation: 

 3(w1 – 1) – 2(w2 – 0) = 3w1 – 3 – 2w2  = 3w1 – 2w2 – 3 = 0    or 

 3w1 – 2w2 = 3 

so that (0, -3/2), (1/3, -1), (2, 3/2), etc., all lie on the plane. 

 In three dimensions the cutting plane is defined by the equation 

 Nj1(W1 – Zj1) + Nj2(W2 – Zj2) + Nj3(W3 – Zj3) = 0  (2) 

Where, as above, any point, (W1 , W2 , W3), that satisfies the equation above lies on the 

cutting plane.  For example, if the normal vector is (2, -2, 1) and the roll call midpoint is  

(1, 1, 1), this produces the equation: 

 2(w1 – 1) – 2(w2 – 1) + (w3 – 1) = 2w1 – 2w2 + w3 – 1 = 0     or 

 2w1 – 2w2 + w3 = 1 

so that (0, 0, 1), (1, 0, -1), (0, 1, 3), etc., all lie on the plane.   
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For s dimensions the cutting plane is defined by the vector equation 

Nj′(W – Zj) = 0  (book, 2.8)   (3) 

where Nj is the s by 1 normal vector such that Nj′Nj = 1, W and Zj are s by 1 vectors and 

0 is an s by 1 vector of zeroes.  The normal vector is constrained to be of unit length for 

roll call voting work but it is a general vector in other applications.   

In general, if WA and WB are both points in the plane, Nj′WA = Nj′WB = cj, where 

cj is a scalar constant.  Geometrically, every point in the plane projects onto the same 

point on the line defined by the normal vector, Nj and its reflection -Nj (see Figure 2.11).  

This projection point for the general case (Nj not necessarily normalized to one; that is, 

Nj′Nj = 1): 

Mj = j s
2
jk

k 1

c
N

=
∑

jN
   (book, 2.9)  (4) 

To see this consider the example of the 3-dimensional plane above: 
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We need to find the point on the normal vector [2 -2 1] that satisfies equation (5); that is, 

the point where the plane passes through the normal vector itself.  Let k be a scalar 

constant.  The solution is: 
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And the point is 2 2 1
9 9 9
 −  

 which is given in equation (4). 

Note that, by construction, Nj′Mj = cj.  In addition, in the roll call context, 

because the midpoint of the Yea and Nay policy points, Zj , is on the cutting plane, it also 

projects to the point Mj.  The cutting plane passes through the line formed by the normal 

vector and its reflection (see Figure 2.11) at the point Mj. 

In the case of a simple probit analysis, the cutting plane consists of all possible 

legislator ideal points such that the probability of the corresponding legislator voting Yea 

or voting Nay is exactly .5; namely: 

P(legislator i votes Yea) = P(legislator i votes Nay) =  

0 1 i1 2 i2 s is+ X  + X + ... + Xβ β β β Φ s 
 = 1 - 0 1 i1 2 i2 s is+ X  + X + ... + Xβ β β β Φ s 

 =  

( )0Φ  = .5 

Where Φ(.) is the distribution function for the normal and Xi1 , Xi2 , …, Xis are legislator 

i’s coordinates on the s dimensions.  Because the β’s and s cannot be separately 

identified, the usual assumption is to set s = 1.  The equation above reduces to: 

 β0 + β1Xi1 + β2Xi2 + …+ βsXis = 0    or 

 β1Xi1 + β2Xi2 + …+ βsXis = β ′Xi= -β0    (6) 

where Xi is the s-length vector of legislator coordinates: 
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 and β  is an s-length vector of the coefficients β1 , β2 , β3 , …, βs; that is: 

1
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s

β 
 β 
 ββ =
 
 
 β 





 

Note that the expression β ′Xi= -β0 is exactly the same as Nj′W = cj, which was 

used above.  Namely, set Nj = β  and every point in the plane projects onto the point: 

Mj = 0 s
2
k

k=1

-β
β∑
β



.   (book, 2.10)  (7) 

In other words, in a regular probit context the coefficients on the independent variables 

form a normal vector to a plane that passes through the point 0 s
2
k

k=1

-β
β∑
β



.  Note that this 

point is fixed with regard to s.  In particular, 

 0 1 i1 2 i2 s is 0
i

+ X  + X + ... + X 1 X′β β β β β
= + β

s s s
  

So that 
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 
   s = - s   
 s 

∑ ∑
    (8) 

When there is complete separation – that is, no error, this plays an important role below. 

The simple logit case is identical to probit when s = 1.  The logit probabilities 

are: 
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0 1 i1 2 i2 s is

0 1 i1 2 i2 s is 0 1 i1 2 i2 s is

( + X  + X + ... + X )

( + X  + X + ... + X ) ( + X  + X + ... + X )
e 1 

1  e  1  e

β β β β

β β β β β β β β=
+ +  = .5 

Canceling out the denominator and taking the natural log of both sides yields the same 

equation as probit: 

β0 + β1Xi1 + β2Xi2 + …+ βsXis = 0 

In both probit and logit the coefficients on the independent variables form a normal 

vector to a plane that passes through the point 0 s
2
k

k=1

-β
β∑
β



.   

The cosine of the angle between the normal vectors from probit and logit should 

be very close to one.  That is: 

|cosθ| =   1
'
P L

P L

 

 

β β
≈

β β
    (9) 

where θ is the angle between the two normal vectors, and ||.|| is the corresponding norm 

of the normal vector.  Computing |cosθ| is a useful check on the two estimation 

techniques.  Several examples of this are shown in the Appendix. 

The Geometry of Complete Separation (Perfect Voting) 

To simplify the notation below let the normal probability density function be 

0 iX ′β + β φ
 σ 



 and the distribution function be 0 iX ′β + β Φ
 σ 



 which I will simplify to 

just φ and Φ, respectively.  I leave s in the expressions because it is the source of the 

identification problem.  Namely, as a practical matter, the cutting plane is identified (up 

to a slight wiggle, depending upon the number of points) but, because there is no error, 
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s→0 and the observed coefficient vector explodes to entries of +∞ or -∞ because of the 

implicit division of the coefficients by s.   

In a standard presentation the ith row of the matrix of independent variables would 

be: 

1

2

3

1

i

i

i

is

X
X
X

X

 
 
 
 
 
 
 
 
  



, and the coefficient vector would be 
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. 

But for clarity of presentation I want to separate the intercept term, β0, from the other s 

coefficients.   

 In the general context my use of i Yea∈  and i Nay∈ below corresponds to the 

binary dependent variable being “1” and “0”, respectively.  The first derivatives for the 

Probit Log-likelihood function are: 

ln L∂
=

∂β
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   (10) 

 
Let a and b be indices from 1 to s.  Treating β0 separately, the second derivatives 

are 
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And the remaining are: 
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 Before turning the pure case of complete separation, consider the intermediate but 

vexing case where one of the independent variables is an indicator variable that separates 

with respect to the binary dependent variable.  That is, whenever the indicator is “1” the 

corresponding value of the dependent variable is “1”.  Let the indicator variable be X1.  

The first partial derivative is: 

1 1 1 1
1 0 0 11

0
1i i i i

i Yea,x i Yea,x i Nay,x i Yea,x

ln L X X X X
∈ = ∈ = ∈ = ∈ =

∂ φ φ φ φ
= + − = =

∂β Φ Φ −Φ Φ∑ ∑ ∑ ∑  (12) 

Because multiplication by zero cancels the 2nd and 3rd terms and the case 1i Nay, x∈ = , 

by definition, does not occur.  Hence, for equation (12) to hold it must be the case that 

because Xi1=1,

0
1

1 1 1
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i

i Yea,x i Yea,x
i i

X
K

X K∈ = ∈ =

 ′β + β β  φ φ +   σ σ   = →
β   ′β + β Φ +  Φ σ  σ 

∑ ∑





, where 

0 2 2 3 3i i s is
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X X ... X
K

β + β + β + + β
=

s
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 The Ki can be treated as constants so that for equation (12) to hold it must be the 

case that β1 → +∞.  Note that this means that the normal vector itself is not identified.  

With the Ki as constants so that s is a constant, then there will be a different normal 

vector with every change in the value of β1 so that the cutting plane is not identified. 

 The case of complete separation has a different geometry.  By definition, there 

exists a plane that perfectly divides the Yeas (“1”s) from the Nays (“0”s).  Let Nj be the s 

by 1 normal vector to this plane such that Nj′Nj = 1 (I do not need the “j” subscript here 

but I retain it for notational consistency).  Hence, as discussed above, if XA and XB are 

both points in the plane, then Nj′XA = Nj′XB = cj, where cj is a scalar constant.  For 

complete separation either we have: 

j i j j i jif  i Yea, then N X c ;  and if i Nay, then N X c′ ′∈ > ∈ <   (13) 

or 

j i j j i jif  i Yea, then N X c ;  and if i Nay, then N X c′ ′∈ < ∈ >  

Without loss of generality I will assume that equation (13) is the correct polarity. 

 Using equation (6) above, this is equivalent to: 

1 1, ;0 0
i iif  i Yea  then X  and if i Nay, then X′ ′β β

∈ β > − ∈ β < −
σσσσ  
    (14) 

Or more simply: 

0 1 1 0 1 1... ..., 0; 0i s is i s isX X X Xif  i Yea  then  and if i Nay, thenβ + β + + β β + β + + β
∈ > ∈ <

s s
 

However, if this is true then the likelihood function forces the following: 

0 01 0i iX X
if  i Yea, then ;  and if  i Nay, then 

   ′ ′β + β β + β   ∈ Φ → ∈ Φ →
   σσ    

 
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because σ → 0. 

 Again, however, note that the cutting plane is identified up to a slight “wiggle” 

because the Xi’s are fixed constants and, by definition, the plane perfectly divides the 

Yeas (“1”s) from the Nays (“0”s).  This plane passes through the s-dimensional space of 

the independent variables and separates those cases corresponding to Yeas (“1”s) from 

those corresponding to Nays (“0”s).   

In actual estimation, the likelihood function for the linear probit (and logit) 

problem is globally convex – the inverse of the Hessian (equation system 11 above) is 

negative definite.  Hence, the gradient vector will quickly climb up the surface of the 

likelihood function to the global maximum.  In the case of perfect separation what this 

means in practice is that the gradient vector “explodes” as it approaches the global 

maximum of zero; that is, the vector becomes infinitely long.  Therefore, a 

straightforward solution to this problem is to apply the constraint 1′β β =   at each iteration 

and then adjusting the standard deviation term, σ, to compensate.  When the standard 

deviation term begins to vanish, stop.  It is then a simple matter to take the normal vector 

and find cj with the Janice algorithm.  

Note that this produces the coefficient vector corresponding to a perfect 

specification for this particular set of independent variables, X, and the binary dependent 

variable, y.  However, since there is no error, there is no probability, and no standard 

errors. 
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Appendix 

 Here are two examples from the NES 2000 election study.  The variables are 

whether or not the respondent voted (0=not voted, > 0 voted), and the independent 

variables are party (0 – 6), income (22 categories), race (0 = white; 1 = black), sex (0 = 

male, 1 = female), south (0=north, 1=south), education (1=high school, 2=some college, 

3=college).   

First Example:  Simple Probit and Simple Logit 
 
. probit voted party income race sex south education age 
 
Iteration 0:   log likelihood =  -680.7266 
Iteration 1:   log likelihood =  -607.9971 
Iteration 2:   log likelihood =  -607.1895 
Iteration 3:   log likelihood = -607.18902 
Iteration 4:   log likelihood = -607.18902 
 
Probit regression                                 Number of obs   =       1062 
                                                  LR chi2(7)      =     147.08 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -607.18902                       Pseudo R2       =     0.1080 
------------------------------------------------------------------------------ 
       voted |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       party |    .019205   .0213884     0.90   0.369    -.0227155    .0611255 
      income |   .0358093   .0132463     2.70   0.007     .0098471    .0617716 
        race |   .0371024   .1733654     0.21   0.831    -.3026875    .3768924 
         sex |  -3.23e-06   .0840525    -0.00   1.000    -.1647431    .1647366 
       south |  -.1761923   .0892279    -1.97   0.048    -.3510758   -.0013089 
   education |   .4239381   .0566663     7.48   0.000     .3128742    .5350021 
         age |   .0194557   .0027814     6.99   0.000     .0140043    .0249071 
       _cons |  -1.503988   .2022846    -7.44   0.000    -1.900458   -1.107517 
------------------------------------------------------------------------------ 
 
. logit voted party income race sex south education age 
 
Iteration 0:   log likelihood =  -680.7266 
Iteration 1:   log likelihood = -607.95982 
Iteration 2:   log likelihood =  -605.9353 
Iteration 3:   log likelihood = -605.92532 
Iteration 4:   log likelihood = -605.92532 
 
Logistic regression                               Number of obs   =       1062 
                                                  LR chi2(7)      =     149.60 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -605.92532                       Pseudo R2       =     0.1099 
------------------------------------------------------------------------------ 
       voted |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       party |   .0361497   .0358051     1.01   0.313     -.034027    .1063264 
      income |   .0623748   .0229564     2.72   0.007     .0173811    .1073686 
        race |    .076192    .285144     0.27   0.789    -.4826799    .6350639 
         sex |   .0159128   .1406487     0.11   0.910    -.2597536    .2915792 
       south |  -.3005962   .1483302    -2.03   0.043     -.591318   -.0098743 
   education |    .720976   .0964645     7.47   0.000     .5319091    .9100428 
         age |   .0335865   .0048184     6.97   0.000     .0241426    .0430303 
       _cons |  -2.621774   .3514732    -7.46   0.000    -3.310649   -1.932899 
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 Probit Normalized 

(Normal Vector) 
Logit Normalized 
(Normal Vector) 

 

Party  0.041498  0.045816  
Income  0.077377  0.078054  
Race  0.080171  0.096566  
Sex -0.000007  0.020168  
South -0.380719 -0.380975  
Education  0.916051  0.913764  
Age  0.042040  0.042568  
 
 
The correlation (Cosine) between the two normal vectors = 0.99976. 
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Second Example:  Ordered Probit and Ordered Logit 

 
. oprobit party voted income race sex south education age 
 
Iteration 0:   log likelihood = -2055.2461 
Iteration 1:   log likelihood = -1954.4476 
Iteration 2:   log likelihood =  -1954.382 
Iteration 3:   log likelihood =  -1954.382 
 
Ordered probit regression                         Number of obs   =       1062 
                                                  LR chi2(7)      =     201.73 
                                                  Prob > chi2     =     0.0000 
Log likelihood =  -1954.382                       Pseudo R2       =     0.0491 
 
------------------------------------------------------------------------------ 
       party |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       voted |   .4241235   .0395748    10.72   0.000     .3465583    .5016887 
      income |   .0176777   .0095894     1.84   0.065    -.0011172    .0364726 
        race |  -.8669836   .1432798    -6.05   0.000    -1.147807   -.5861603 
         sex |  -.0837943    .064829    -1.29   0.196    -.2108568    .0432682 
       south |    .246657   .0693117     3.56   0.000     .1108085    .3825055 
   education |  -.0019693    .043899    -0.04   0.964    -.0880097    .0840712 
         age |  -.0066873   .0021422    -3.12   0.002     -.010886   -.0024886 
-------------+---------------------------------------------------------------- 
       /cut1 |  -.7521825   .1517723                     -1.049651   -.4547142 
       /cut2 |  -.2260099    .148625                     -.5173096    .0652898 
       /cut3 |   .2007637   .1477327                     -.0887871    .4903144 
       /cut4 |   .5218228   .1485304                      .2307086     .812937 
       /cut5 |   .9618794   .1510958                      .6657371    1.258022 
       /cut6 |   1.470619   .1557338                      1.165386    1.775852 
------------------------------------------------------------------------------ 
 
. ologit party voted income race sex south education age 
 
Iteration 0:   log likelihood = -2055.2461 
Iteration 1:   log likelihood = -1958.0084 
Iteration 2:   log likelihood = -1957.1315 
Iteration 3:   log likelihood = -1957.1306 
 
Ordered logistic regression                       Number of obs   =       1062 
                                                  LR chi2(7)      =     196.23 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -1957.1306                       Pseudo R2       =     0.0477 
 
------------------------------------------------------------------------------ 
       party |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       voted |    .695314   .0682924    10.18   0.000     .5614633    .8291647 
      income |   .0295464   .0160355     1.84   0.065    -.0018826    .0609755 
        race |   -1.45739   .2404073    -6.06   0.000     -1.92858   -.9862005 
         sex |  -.1442224   .1097141    -1.31   0.189     -.359258    .0708132 
       south |   .3940648   .1171609     3.36   0.001     .1644337    .6236959 
   education |  -.0127451   .0749615    -0.17   0.865     -.159667    .1341767 
         age |  -.0115873   .0036647    -3.16   0.002    -.0187699   -.0044047 
-------------+---------------------------------------------------------------- 
       /cut1 |   -1.31551   .2545206                     -1.814361   -.8166589 
       /cut2 |  -.4210721   .2477715                     -.9066953    .0645512 
       /cut3 |   .2779521   .2460457                     -.2042886    .7601929 
       /cut4 |   .8034034   .2477555                      .3178115    1.288995 
       /cut5 |   1.534033   .2529847                      1.038192    2.029874 
       /cut6 |    2.41272   .2622729                      1.898674    2.926765 
------------------------------------------------------------------------------ 
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 Probit Normalized 

(Normal Vector) 
Logit Normalized 
(Normal Vector) 

 

voted  0.424174  0.416670  
Income  0.017680  0.017706  
Race -0.867086 -0.873346  
Sex -0.083804 -0.086426  
South  0.246686  0.236145  
Education -0.001970 -0.007638  
Age -0.006688 -0.006944  
 
 

The correlation (Cosine) between the two normal vectors = 0.99995. 

 


	P(legislator i votes Yea) = P(legislator i votes Nay) =
	= 1 -  =
	= .5

