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ABSTRACT

In continuation of earlier work on a new individual difference model for
the multidimensional analysis of preference data (Schénemann and Wang,
1972), a relatively efficient algorithm for applying the model to fallible data
was developed. It is based on the Method of Conjugate Gradients and thus
does not require storage for second order derivatives. Several different ver-
sions of such an algorithm were compared in terms of robustness, accuracy,
and speed of convergence. The results strongly suggest that the so-called
“intervening conjugate gradient method” (which iterates for only two of the
three sets of unknowns and solves for the third set algebraieally at each
stage) is the most effective method for most purposes. The algorithm was
applied to a relatively large set of political choice data which had been
previously analyzed by a different method. The outcome of this empirical
study not only confirmed the earlier vesults but also led, as a consequence of
the stronger metric structure of the present model, to a more detailed and
informative description of the data. :

INTRODUCTION

Earlier work of these authors (Schénemann, 1970a; Schone-
mann & Wang, 1972) has dealt with the development of a math-
ematically tractable model for the multidimensional analysis of
preference data, either in the form of paired comparison (p.c.)
probabilities or in the form of rankings. The result was a model
which can be interpreted in two different ways (i) as a metricized
version of the Coombs unfolding paradigm or (i) as a multi-
dimensional generalization of the Bradley-Terry Luce model for
paired comparison data.

The basic idea under the first interpretation is that a set of
stimuli (e.g., a number of political candidates) and a set of judges
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(e.g., voters) can be represented in a joint, m-dimensional (Eucli-
dean) space. A given judge will prefer one stimulus A over an-
nother B if A is closer o that Judge’s “ideal point” in this joint
space. This originally “non-metric” model was metricized by choice
of a specific mathematical form of the Presumed “igopreference
contours.” The same mathematical model can be interpreted, al-
ternatively, as a multidimensional extension of the BTL-model
where differences in scale values are replaced by differences in
squared distances from the ideal point in the argument of a logistic
response function which relates the observed choice probabilities
to the underlying Euclidean distances. Specifically, under this
second, interpretation, the model can be written

f1] Py ;= G(uik.j)

where G (u) = 1/(1+ exp (~%)), uy; = d%,; — d2; ,

and where Py; is the (observable) probability that stimulus 4 is
chosen over stimulus % by subject 4, and drs, diyare the (Buclidean)
distances between the jth ideal point and stimulus i, or J, respec-
tively. Given the P, ;, the objective is to solve for the vector valued
coordinates of the stimuli and the ideal points.

To explain our interest in seeking practical ways for imple-
menting such a model in the fallible case a brief statement of its
major assets, as we see them, may be helpful. We think such a
model merits consideration as a promising research tool because

(i) it is based on a simple, unambiguous, and easily performed
experimental task — p.c. judgments — in contrast to some
of the presently popular scaling models where the experi-
mental task is often left vague or even completely unspeci-
fied or, at the other extreme, unrealistically demanding (for
the sake of mathematical tractability);

(ii) the input information (probabilities) so obtained is well
defined and need not and cannot be tinkered with ag in
some of the presently widely used “non-metric” techniques;

(iii) the model involves an intuitively plausible rationale — the
Coombs unfolding paradigm, and thus should stand some
chance toward verification in practice;

(iv) on the other hand, the model is not tautological or only triv-
ially non-tautological (as are some of the “non-metrie”
techniques, because any set of numbers can be converted
into distances, indeed Euclidean distances, by a monotonic

46 MULTIVARIATE BEHAVIORAL RESEARCH




Ming-Mei Wang, Peter H. Schonemann and Jerrold G. Rusk
transformation); rather it can be falsified explicitly with
the help of chi-square tests (Mosteller, 1951) against the
actually observed protocol information — see (ii) above;

(v) the model is thought to be more realistic than the presently
available, usually one-dimensional metric alternatives (not-
ably the Thurstone Case V model and the BTL-model), not
only because it is multidimensional, but also because

(vi) it allows for individual differences in a natural way, as they
can be expected to arise in actual applications, e.g., to vot-
ing behavior or consumer behavior;

(vii) finally, in spite of its generality, the model is mathematical-
ly tractable so that its properties can be studied in some
depth before resorting to iteration.

The fact that the model possesses an exact algebraic solution
does not mean that there is no room for the development of effi-
cient algorithms for use with fallible data. It became clear fairly
early that the algebraic solution is not very robust in the fallible
case.

We had therefore undertaken some exploratory work to study
the feasibility of a simple least-squares solution based on the meth-
od of steepest descent. This algorithm performed satisfactorily for
smaller data sets and it was used for the analysis of some empiri-
cal data sets which were included in Schonemann and Wang, 1972.
But for larger data sets its performance was not very satisfactory.
The main objective of the work to be reported here was the devel-
opment of more efficient algorithms for use with fallible data. It
is natural that such algorithmic work is never fully completed and
that there is still room for further improvement, at least in prin-
ciple. Fairly extensive empirical work (Wang, 1973), on the other
hand, makes it likely that such improvements may not be easy to
achieve in practice, at least not in the near future, because even
highly efficient algorithms, such as the Fletcher-Powell method
(which requires storage for second order derivatives), did not
perform markedly better than the conjugate gradient algorithm
which we finally settled on. This algorithm will be described in
sore detail in section 3 after a brief review of the algebraic strue-
ture of the model has been given in section 2. Finally, in section 4,
the results of an empirical study, which deals with an application
of the model to political preference behavior, will be presented as
evidence that both the model and the algorithm perform well in
gituations for which they were'designed.
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GENERAL FORMULATION OF THE PREFERENCE MODEL

The model can be stated in two alternative ways — as a spe-
cial case of the Coombs unfolding model or as a multidimensional
generalization of the BTL model. To formulate it as a metric cage
of the Coombs model, one needs three basic assumptions:

(a) A set of p stimuli S; and a set of ¢ subject-specific (or
subgroup-specific) ‘““ideal points” P; can be located jointly in an
m-dimensional Euclidean space. Thus the squared distances d2;
between points from distinet sets are

[2] d2’51=(‘§i_"’7i),(éfi_7lf) ’5=1,2,---,10§ j=1’2:'--;q ’

where & = (®n,Zi2, ..., %) and 5/ = (Yj,¥j2s-..,Ym) are the co-
ordinate vectors of S; and P;, respectively.

(b) Following the BTL model, the probability p;; that all
subjects whose ideal point is at P; will prefer stimulus S; over
stimulus S; in a p.c. situation is assumed to be a function of p
subject-specific “scale values” a;; which are determined up to sub-
ject-specific multiplicative constants b,

[3] Pirg = Pr(S; > Skle) =qy (@ + ax) 1= (a%y + a*y) ",

where af*ij = b,-ai,- > b,— > 0.
(¢) A function is postulated which relates the scale values
a;; (a*;;) to the distances d;;

[4] a*i,- = bjarij = exp (_Cdf2ij) ’

where ¢ > 0 can be chosen arbitrarily.

Alternatively, one can combine equations [3] and [4] to ex-
press a direct relation between the observables pa.; and the implied
Euclidean distances d;;

[5] Ping = 1/[1 + e~°(d?; — d*y) ]
=1/{1+ e~[(& ~ ) (& —n) — (& — )" (& —ny) 1}
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Thus the basic model is deseribed by equations [2]-[4] or equival-
ently by equations [2] and [5].
In summary, the model defines a derived scale [B*, R, (£73)].
Tts derived measurement system (Suppes & Zinnes, 1963) is B* =
[SxSxP,p] where S = (S1,Ss,...,S,) and P = (Py,Ps,...,P,) are
the stimulus set and the ideal point set respectively, and py; is the
p.c. probability of stimulus ¢ preferred over stimulus % by the sub-
ject (subgroup) j (0 < pu; <1, Puj+ Pwj=1 and pu,; =.5). The
representing relation R[p,(&y)] is given by equation [5].

Algebraic Solution

In the exact case, there exists a closed algebraic solution for
the model. This solution can be discussed in two stages. At the
first stage, the input p.c. probabilities are mapped into between-
set squared distances. From equation [5] it follows that this is
accomplished by an inverse logistic transformation of the proba-
bilities

[6] Uig.; = L_l(pik.j) =N Pins — M Driy »

where ;= c(d?; — d2;), and L(x) =1/(1 + ¢—2) is the logistic
function on z. Upon averaging over the rows of each matrix U; =

p
(t:.;) Tor each § and imposing the constraints . 3 di?* =0, one
7, =
obtaing the jth column of the between set squared distance matrix
up to a subgroup-specific additive constant ¢; and a multiplicative
constant ¢, -

P
[7] dkj2* = (¢/p) _E Uir.; = C(dzkj - (1/p) g dzij)

i=1 1=1

= C(dzk] -+ t]) 9
where

b
ti= (1/p) .21 Py, k=12,...,p.
1=
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Since the multiplicative constant ¢ corresponds to a uniform
dilation of the configuration and does not affect its shape, we can
assume ¢ = 1 for convenience. Thus the between set squared dis-
tances are determined up to a set of column additive constants
7= (tl,tz, eny q).

The second stage deals with a “generalized metric unfolding
problem”: the problem of solving for the coordinate vectors &, 5
in

[8] a? =d'lj2*_tj= (51_7)})'(51:“‘771), 1=1,2,...,p: 7=12,...,q ,

given the pq d;2* from the first stage.

This differs from the original “metric unfolding problem” [2] in
that now only the d,*, not the d2;, are assumed known, i.e., in the
generalized problem the squared between set distances are given
only up to some (unknown) column constants t;. However, in
Schénemann and Wang (1972) it was shown that Schénemann’s
(1970) solution of [2] ds also a solution of the more general prob-
lem [8]. Therefore, the model [2]-[4] can be solved algebraically
in the exact data case by first solving [6] and then [8].

Geometric Interpretation

The model can be interpreted as a metricized version of the
multidimensional unfolding model. One way to see this is to set
b; = (2zc?)™?* and ¢ = o—2/2. With these substitutions, equation
[4] can be expressed as

[9] iy~ N, (&; ny, 021,) .

This means that the scale value a;; is proportional to the ordinate
at point & (the location of stimulus S;) of an m-variate normal
distribution with mean vector u=n; (the location of the ideal
point P;) and covariance matrix 3 = ¢2],,. There are ¢ such m-vari-
ate normal distributions, each having an identical covariance ma-
trix X but a different mean vector for different person P,.

These distributions can be regarded as defining circular “iso-
preference contours” (Green & Carmone, 1969, Figure 2) around
each person § which decrease in intensity inversely with the dis-
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tance dy between the stimulus S; and the ideal point P; of person
7, which is at the center of this field. The subject-specific constant
b; serves as a unit which would raise or lower the isopreference
contour of subject P; but not affect the ratio of the ordinates un-
der this contour at S; and S;, i.e., the p.c. probability Py ;== (1 +
/) —1 would not be affected by different choice of the b,

In the above interpretation, the present model is a special case
of the Coombs unfolding paradigm. The main difference is that
the present model stipulates a specific mathematical form of the
preference contours, whiles Coombs’ original formulation does not.
The gains from adopting such a stronger metric model are richer
predictions, and the price to be paid for it is greater susceptibility
to falsification.

Alternatively, one can interpret the present model as a multi-
dimensional relative of the metric, but unidimensional BTL model.
The BTL model asserts that

(101 Py =1/[1 + e~ OB~ D] = G(w4,4)

where wi; = v; — vy G(x) = 1/(1 + e~?) is the logistic function,
and v;, v, are the scale values. Now imagine an ideal point P; with
seale value v; which corresponds to the maximum preference of an
individual P;. Let it be to the right of all stimuli. The term w;,; in
equation [10] can then be viewed as a difference in distances, i.e.,

[11] wik'j =V~ V= (Q}j - vk) - (,U_’I - ,Ui) = dki - d,,'_j .
Thus equation [10] can be written
[12] Py =1/[1 + e—Gmn—an] |

Equation [12] is the same as equation [5] except that dis-
tances replace squared distances, This difference has a rather im-
portant implication. In equation [11], »; cancels algebraically, and
hence renders the ideal point irretrievable, since we are free to
locate the ideal point on the v-scale anywhere to the right of the
stimuli, In contrast, once we deal with differences in squared dis-
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tances from the ideal point, as in equation [3], the location v; of
the ideal point P; will affect the argument wy,; = d?y; — d2; =
(v; = i + v~ v;) (v; = v3) = (diy + di) wir; and thus the obser-
vables Py,; This enables us to recover the loeation of the ideal
points, given sufficient information.

The more general multidimensional case is illustrated in Fig-
ure 1. The two stimulus points S; and S, are located somewhere on
two concentric circles (in general, hyperspheres) with radii d;; and
dij, respectively, and origin at ideal point P, The magnitude
ld’“i - dﬁ[ of the difference in distances is simply the distance be-
tween the two concentric circles which now does depend on the
common origin P;, unless the origins are collinear with S; and S;.
To see this, let us rotate S; in Figure 1 to S;* so that ldkj - oli,-[ is
simply represented by the length ]S,*,S,,[ of the segment between
Si* and S;. Similarly, S; can be rotated to S;** so that jolk,-g-dg’l,
for an ideal point P; is equivalent to the length ]S,-**, Skl of the
segment between S;** and S;. It is obvious that IS,-*,Sk[ is not the
same as }Si**,Sk[.

In the present model, the difference in unsquared distances
Wir.j = dpy—di; is multiplied by the sum dy; + d;; of the distances of
both stimuli from the ideal point. This means, psychologically, that
the preference between two stimuli S; and S, with fixed d; — di;
should become more pronounced as their joint distance dy; + dy;
from the ideal point increases.

Figure 1. Geometry of the S & W model
Py = Gld%y; = d%)) = Guy,,) -

52 MULTIVARIATE BEHAVIORAL RESEARCH




Ming-Mei Wang, Peter H. Schonemann and Jerrold G. Rusk
THE FALLIBLE CASE

Although an algebraic solution exists for the present model in
the error-free case, a relatively robust solution (preferably with
some optimal properties, e.g., least squares or maximum likelihood
solution) is desirable for work with fallible data. Therefore a two-
stage least squares (L.S.) solution has been developed. This solu-
tion, whose two stages correspond to those of the exact algebraic
solution, will now be described.

Least Squares Fit of the BTL Model

At the first stage, the p.c. probabilities are mapped into dif-
ferences between squared distances. Two problems may coraplicate
this conversion. Firstly, there could be extreme probabilities (0 or
1) in the data. This could mean that a subject is capable of dis-
criminating some stimuli perfectly, or it could be due to the small
sample size of the estimates. Such extreme probabilities introduce
technical difficulties, since pi;= 1 implies an infinife mapping
d2y; — d2; = G~1(pa;) = o when a response function G with un-
bounded: range is used, as in the present model. Secondly, the
probability estimates may contain error so that they do not con-
form exactly to the BTL model. Finally, there could be some p.c.
probabilities which are not ohserved at all in the experiment. To
cope with these problems, Gulliksen’s (1956) L.S. solution for in-
complete p.c. data was adopted which had been devised originally
for Thurstone’s Case V.1

In this procedure the L.S. estimates of the logarithmized BTL
secale values u; = In a,; (i=1,2,...,p) for subjeect 7 are obtained so
that f; in [13] is minimized:

p Mg
[13] fj = 3 p 62-,;10_; ’ where
i=1 k=1
(i) e,

Cikg = Uy — Uy — Wiz.g »
Wig.; = L_l(pﬁc.j) =Inpu;—In Druij »

1.. A reviewer pointed out, quite correctly, that there are, of course, other
and simpler ways of dealing with the missing data problem. The simplest,
perhaps, would be to select a sufficiently large constant ¢ for mapping unit
probabilities into ¢ and zero probabilities into —c. Whether such a course
is more subjective than ours for handling missing data is not at all certain.
It coul.d be argued that perfect discriminations, if actually observed, contain
more information than imperfect discriminations, and hence should not be
discarded. Those who share this point of view should have no difficulty in
adapting the program accordingly.

JANUARY, 1975 53




Ming-Mei Wang, Peter R. Schénemann and Jerrold G. Rusk
S; = the set of all stimulus pairs (4,k) which are actually observ-
ed and not perfectly discriminated (i.e., 0 < pi;z; < 1, the pair (i,k)
is treated as unobserved if the observed py; is 0 or 1) for subject
4, and ny; = number of pairs involving stimulus ¢ which are in S;.
An algebraic solution for this L.S. problem is described in
Gulliksen (1956). Schonemann (1970b) gives a slight reformula-
tion which allowed him to derive a sufficient condition for a unique:

VPN
solution. Under the constraints 3 u; = constant ¢; the vector

=

U7 = (U Wz, - - - » Uyy) OF the L.S. estimates of u;; is given by

[14] fa,- = N;=1(¢J, + w;) (assuming N, is nonsingular),

where N;= (ny;) is a perp matrix with elements n;; = n, the
number of observed probabilities in the ith row of the p.c. matrix
for the jth subject with diagonal element counted as filled, and
for k41, nyg,; =1 if stimulus pair (i,k) is not in S;, 0 otherwise.
The vector w; contains the elements ‘

M5
Wi = 2 Wy, (4.k) S5 .
k=1

In practice, it is often convenient to define the estimates z'li,
so that they sum up to zero (i.e., ¢; = 0). The solution [14] will
then determine the L.S. estimates of u; up to an additive constant
if there are more filled cells (including diagonals) than empty
ones in each row of the p.c. probability matrix for subject 7, ie,
a sufficient condition for a unique solution of [18] is (Schone-
mann, 1970b):

P
[15] Nyig > kE ng; foralli=1,2,...,p.
=1
k#1
These L.S. estimates 'ZZM can be mapped into estimates of the

between set squared distances up to a multiplicative constant ¢
and a set of ¢ subject (column) specific constants ¢; by
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[16] 34,-2* = C&Zij -+ tj = ""'L,Zij .

If condition [15] is mot met, there may be no determinate esti-
mates of d;2* for that particular subject. In this case, the subject
can be dropped from further analysis. This condition implies that
the solution [14] is remarkably tolerant in its acceptance of empty
cells.

Least Squares Solution for the Generalized Metric Unfolding
Problem

The objective of the second phase of the solution is to find
estimates of the coordinate vectors £, »; for the stimulus points
and the ideal points, given the estimates of between set squared
distances up to column-specific additive constants in equation [16].
We now deal with the fallible case of the generalized metric un-
folding problem because the estimates of d;?* in [16] are now con-
taining error.

Schénemann’s (1970a) algebraic solution can be applied to the
fallible case only if there is sufficient information (i.e., if there
are enough points in both sets). In this case it has L.S, properties
in the sense that it is based on a rank m L.S. approximation to
Ci2. However, it would be preferable to have some optimal solution
with more clearly defined L.S. properties. Therefore a L.S. solu-
tion was developed for the generalized metric unfolding problem.
Since. the relevant information are squared distances, the loss
function f was defined as

Yy q
[17] f= 3 3 €% ,where
i=1 j=1

€y = (d'bjz* —t;) — (& =) (& — ;)
m
= (dijz* - tj) - % (e~ ’.’er)2 .
r=1
The first order partial derivatives of f are
q
[18] Of /9% = —4 3 ey (T — yir)

j=1
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q m
=4 .E (xir - fl/,-r) [ 2 (xir — yjr)Z — dijz* + tj] ,

p
[19] of /0y =4 2 ey (@ — Yp)

1=

. P m
= —4 2 (xi, - y,-r) [ p1 (xir - ?/J'r)z - diiz*
i=1 r=1

+t.1’] ’

P p m
[20] Gf/at, = —2 E €y = 2 2 [ 2 (xir - y,,.)z - d/,;jz*
=1 i=1 r=1
+ ti] ’

t=12,...,07=12,...,¢;r=12,...,m.

Upon setting these derivatives to zero, one obtains the normal
equations 8f/dx; = 0, 8f/dy; = 0, and 8f/dt; = 0. These equations
do not seem to have an explicit algebraic solution. Therefore some
iterative search method (see, for example, Wilde & Beightler,
1967) had to be used to solve the minimization problem. Such
methods usually involve iteration and can be quite time-consuming.
The particular choice among the many available algorithms de-
pends upon the shape of function involved. Minimization algo-
rithms which have been found to be relatively efficient for the
present case will be considered in the next section.

Numerical Minimization Algorithm for the Second Stage

General considerations. A common feature of many minimization
techniques is that they are based on the vector of first order par-
tial derivatives (the “gradient”). This vector points in the direc-
tion of steepest slope of the surface of the function. The techniques
search along this direction at each iteration until an optimal point
is reached where the gradient vector vanishes. Two well-known ex-
amples are the optimal gradient method (Cauchy, 1847; which
finds an optimal step size at each cycle) and the method of steep-
est descent (“‘gradient methods™).

More sophisticated algorithms have been developed in the last
few decades. A variant of the gradient method is the method of
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resultant gradients (Finkel, 1959). This method was found by
Joreskog (1966) to be more efficient than the regular gradient
method in applications to factor analysis problems. The efficiency
of any particular algorithm depends, of course, on the nature of
the problem dealt with. For the present problem [17], several oth-
er methods were studied. All are designed to have “quadratic con-
vergence,” i.e., they converge in n steps for n unknowns if the
criterion function is quadratic. Specifically, we experimented with
the method of deflected gradients (Fletcher & Powell, 1963), the
method of conjugate gradients (Fletcher & Reeves, 1964), and a
modified version of gradient method with variable step size.

Before adopting any specific algorithm it can be useful to
appraise its prospective practicality in more general terms. Some
methods, e.g., the method of deflected gradients, require storage
space for the Hesgian (the matrix of the second order derivatives).
They quickly become unrealistic as the number of unknowns in-
creases. Further, a method which involves extensive computational
effort per cycle may not be faster than a simpler one in the long
run. Thirdly, the particular outcome may depend on the shape of
the surface. For example, thé Fletcher and Powell method has been
gshown to be excellent for Rosenbrock’s (1960) banana-shaped
function with two unknowns. But it did not prove superior in speed
of convergence to the other methods for the present problem. In
addition, the number of unknowns (n) in the present problem is
going to be large as the number of points (p,q) of both sets and
the number of dimensions (m) increase [n=(p+q)m + g]. Thus
any -algorithm which requires core storage for the Hessian (a
square matrix of order n) would: present practical problems con-
sidering the capacity of even modern computers, no matter how
superior it may be in theory.

The conjugate gradient method, This algorithm was designed by
Fletcher and Reeves (1964). It does not need storage for the Hes-
sian, but has quadratic convergence. The basic characteristic of
this algorithm, which thus seems to combine the best of both pos-
sible worlds, is that it utilizes the information of the previous
points to form a direction vector: which guides the search to the
minimum. It is a variant of the method of conjugate gradients
(Hestenes & Stiefel, 1952) for solving a set of simultaneous linear
equations with a symmetric positive definite matrix of coefficients.
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The general principles of this method are described in Beckman
(1960) and Fletcher and Reeves (1964).

(i) General description.

In the method of conjugate gradients, a set of » direction
vectors py Ps, ..., D, are generated such that p;+, is a linear com-
bination of —g;+; and py,ps,...,, are H-conjugate (H-orthogonal,
ie., p/Hp; =0, 4,7 = 1,2,...,n, i=j, where H is the Hessian at the
minimum). Fletcher and Reeves consider a simple form of this
method where most of the coefficients in this linear combination
are zero. The result is:

Pi+1= —Gi+1+ BiPi »
where 8; = ¢/1+19:+1/9/9:, 1 = 1,2, ..., 1.

The process starts at an arbitrarily selected initial point 2,
(see next section) and the negative gradient vector ~g; = —g(x1)
serves as the initial direction vector p; (= —g1). Let p; be the
direction vector used at step 7 along which a new point z;+, can be
found so that the maximum reduction of the criterion function f
is produced in the direction of p;, and g; be the gradient vector at
the point z;. Then, at each step i, the following computations are
performed:

[21] Tiv1 = X3 F s

where y; is the step size which minimizes the function f*(y) = f(x;
+ vp;) under choice of y. The problem of finding such a y is usual-
ly called the “problem of linear search.” In practice, vy, can usually
not be obbained by differentiation. Rather, a quadratic interpola-
tion technique is used to approximate the value of . This step
size y, is then used to complete the computational cycle:

[22] gi+1 = 9(Zi+1)
[23] Bi= O i+19:+1/ 979 »
[24] Dit1= —Gir1+ Bili »

where p;+; is the new direction vector along which a new point
Z;+2 18 to be located at the next iteration ¢+1.
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This procedure can be shown to converge to the minimum in
no more than x iterations for any quadratic functions of » argu-
ments. For higher order functions (as in our case), the conver-
gence will be slower and its rate will depend on the closeness of
the local quadratic approximation to the surface of the criterion
function.

Fletcher and Reeves (1964) have modified the above basic
process so that, after every » + 1 iterations, the process is restart-
ed at the current z (i.e., Z,+2 = z1). They found that such a modi-
fication speeds up convergence, which therefore, was adopted for
our present problem [17].

(i) A quadratic interpolation technique for the linear search.

Fletcher and Reeves (1964) use Davidon’s cubie interpolation
procedure to solve the linear search problem [21]. In the present
application, we preferred a simpler quadratic interpolation tech-
nique for finding the value v; at iteration 4. A small positive value
vo is taken as the initial step size. At each iteration 7, a point z, =
Z; + yiap; along the direction of p; is found. Its function value
f. = f(zx,) is compared with f; = f(z;). If f(x,) is less than f;, a
series of points z, = x; + 2% yaw; (e =1,2,...) and their function
values f. = f(2.) are computed until some « is reached so that f,
is not less than f, 4. Then, as a lower bound for the value v;, we
use @ = 2%~1y, 4. If f, is not less than f;,, weset ¢ = 0.

The next stage is a search between z, = z; + ap; and z, (when
a = 0, we have a = 0) in the direction of p; to find an upper bound
b for the value of y;. To obtain b, we examine the middling points
Zy=2-%[(2% — 1)Zsy + 2,] and the function values f, = f(x.)
(u=1,2,...) until some integer u is reached for which 7, < fo_s.
This means that z,_; is a limit point where further decrease of the
criterion function along the direction of p; cannot be obtained. The
upper bound of y; is then set to0 b = 2—#+1[(2¢—1 —~ 1) 201y, | + 20
Y] = 20-0F1(2u=2 4 14) 5, , In the case ¢ =0, b=2-+1y, ; is
taken as the upper bound of . To avoid unnecessary waste of
time, this intensive search for v; is limited to u < 4. Experience
showed that the improvement in the approximation to:y; by more
intensive search for a very precise range of y; is not worth the
extra time spent in the search.

Having obtained a range for v; (a < y; < b), the best value of
y: is approximated by quadratic interpolation of the three points
Bo=2i+ap; (Be=2a; if a=0), 2, =1% (%, +ax) =+ (¢ +Db)
Di/2 = x; + 2°7%(2°~1 + 14) y;,_4p; (in the case ¢ = 0, b = 2~#+1 Vieis
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we have x, = x; + 2—* y,p;), and &, = x,1 = x;+bp, as a function

of v, i.e,, f¥(y) = f(x; + yp;) where the corresponding values of y

assumed by the three points are a, o + b/2, and b, respectively.
Thus, the value yui = y; which gives the minimum of f* under

choice of y can be approximated by

[25] v = L(A* = fa)R/2(f1* + f3* — 2f2*)] + ho ,

where fi* = f(x,) =f*(a), f*=f(x)=F* (a+b)/2, fo*=
f(xy—s) =F*(b) and h=(b—0a)/2, hy,=(a+b)/2 [ie, fi*=
f*(ho = k), f2* = f*(h,) and fs* = f*(h, + h) in terms of f*(y) =
f(x + ypi) 1.

The Fletcher and Reeves method with such a quadratic inter-
polation procedure [instead of Davidon’s method in the linear
search (eq. [21])] will be called ‘“conjugate gradient method”
(CIGMC) in the sequel.

(iii) “Intervening conjugate gradient method” (CIGMI).

Another algorithm was tried which iterates only for X and Y.
At every point of the linear search, estimates of the additive con-
stants t; for the given values of X and Y are obtained algebraical-
ly from equation [23], which can be solved exactly, given X, Y,
and d;;%*:

A b m
[26] ti = 1/10 . 21 [dijz* - E (xir - yir)z] ’ .7 = 172’ L] q
q = =

These values of It\,- are then entered into the computations
[21]-[24] as required by the conjugate gradient method at all the
points studied in the linear search process. Experience with this
method showed that the extra efforts spent in obtaining L.S. esti-
mates of ¢; at every intermediate point of the linear search process
paid off in terms of overall speed of convergence.

This revised form of the conjugate gradient method will be
called “intervening conjugate gradient method” (CIJGMI) in the
sequel.

(iv) Summary of the intervening conjugate gradient method

for the generalized metric unfolding problem.

The intervening conjugate gradient method has been applied
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to the generalized metric unfolding problem [8] with satisfactory
results. It requires only slightly more storage than the gradient
methods (GRDMC and GRDMI, analogously defined) » more loca-
tions are needed for saving the direction vector of the previous
iteration. It does not require much more computational work and
is not difficult to program. In practical applications, it performed
much better than the gradient method, especially when the number
of unknowns was relatively large. In particular, it considerably
improved the rate of convergence in application to the metric un-
folding problem.

A subroutine CIGMI has been written for solving the L.S.
problem [17] by the intervening conjugate gradient method. Its
major computational steps are given in Table 1.

Table 1. Flow Chart for CJGMI

Iterative process:
DO [5] to [6.4] (L =1,2,...N, number of major eycles each consisting of
n+ 1 inner iterations).

DO [5] to [6.2] (i=12,...,7+1, n is the number of unknowns) (Step [5]
provides a practical way for obtaining the bounds a, b by the procedure
described in (ii) of The Conjugate Gradient Method.

[6] seta=0,b=0and f;*=F; .

[5.1] compute x, = a; + ¢,p; and f, = f(xy 7o) Where 7, is obtained from
eg. [26], given », = (X,,Y,).

[5.2] if f, < F1* set a = ¢, ¢, = 26, f1* = f, and GO TO [5.1].

[6.3] setb=c¢c,, fo* =Ffpu=0.

[5.4] compute x, =z, + ¢;p; and f, = f(w,r,), set u=u-+1, where ¢; =
(a-+b)/2.

[5.5] if £,> fi* and u <4, set b= ¢;, f3* = f, and GO TO [5.4]. (Note:
[5.4]-[5.5] is not repeated more than 4 times for practicality.)

[5.6] set fy* =Ff, .

[5.7] compute y; from eq. [25] given f,*, fo*, f3* and b = (b=-a)/2, h, =
(a+b)/2 (a < y, < b), and set ¢, = v; to be used in [5].

[5.8] obtain a new point x4, = @; + y,0;, ils corresponding gradient vec-
tor g,41 = g(%;11, 7441) and its function value f, ;= f(%, 14, 7;41)
where ;4 is the L.S, estimate of - given &, ;.

[5.97 construct a new direction vector p,,, = —g.., + B0, from egs.
[23]_[24]. it1 i+l ﬁzpz
Test of convergence:
[6] check stopping criteria.
[6.1] .ii' stopping criteria (e.g., ¢;41~® or 9/9, < ¢ (a very small posi-
tive value such as 10—20)) are met, GO TO [7].
[6.2] if number of inner iterations n+1 is not completed, GO TO [5].
[6.8] if number of major cycles N is ecompleted, GO TO [7].
[6.4] replace @y =, 4, and py = —g, .10, ¢, = Yr+1 then GO TO [5].
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Starting configuration and stopping criteria. Two minor technical
problems with iterative algorithms are the choice of a starbing
point and the problem of setfing some criteria to terminate the
iterative process. These two. problems will now be discussed in
detail:

(i) The choice of a starting point.

In principle, any starting point is equally satisfactory for
quadratic funections when the iterative algorithm has quadratic
convergence. For functions of higher order, one would wish to
start with a location from which the minimization process will
lead to the minimum as quickly as possible. Sometimes it may be
possible to find a good starting point by some prior theoretical
analysis of the criterion function, or sometimes from . one’s past
experience with the particular problem. But since we usually lack
such prior knowledge of an approximate solution, it is helpful to
have a general way of generating a starting point to bring about
reasonably fast convergence.

In the present case, we decided to use an Hckart-Young de-
composition of the quasi-scalar product matrix Ci; for this pur-
pose. Thus, if

C12 = VDmW’ = VDm%Dm%W’ = G1H1’ ’

(where D,, contains the positive square roots of the latent roots of
C'12C12, and Gy = VD, %, H; = WD, %) the iterative process starts
with X; = Gy and Y; = H,. This particular choice is partially based
on its practical convenience but also on some theoretical insights
gleaned from the algebraic solution. Our preference for this start-
ting point is largely, but not exclusively, empirically motivated. In
Schénemann (1970a) it was shown that G and H relate to the
solution matrices X and Y through a joint non-singular matrix T.
Extensive experience with the algebraic solution showed that the
product M = TT" is practically always near diagonal, so that T can
be chosen near diagonal for this choice of Gi, H;. Subsequent ex-
perience with the I.S. solution confirmed that this particular
gtarting point compares favorably with all others which were
tried.

If the original modified gradient method or conjugate gradient
method is used, the initial values 7; of the column additive con-
stants = can be obtained from eq. [26], given X; and Y;.

Finally, we note that the Eckart-Young roots of Cis provide a
basis for selecting m. In the fallible case, the number of dominant
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roots m, (the remaining roots should be much smaller and near
zero) is an estimate of the true dimensionality m. In the exact
case, this number m, is equal to the dimensionality of the underly-
ing common space (if a subspace case is involved, m, will be the
dimensionality of the joint subspace).

(ii) Stopping criteria.

Although the formal requirement for a point x; to be at the
minimum is that the gradient g; vanishes, one does not expect in
practice that all elements in g; vanish completely because of ac-
cumulated rounding errors. Hence, one usually decides on a small
positive value epsilon (&) as the acceptable size of the elements in
g; for x, to be considered a minimum. The particular size of ¢ de-
pends on the practical situation. In some cases a very precise solu-
tion may be cerucial, and one will adept a very stringent acceptance
criterion (e.g., a very small ¢). In other cases, a somewhat less
stringent criterion may be more appropriate. Frequently, a lenient
criterion (e.g., s < .01) is sufficient to yield a satisfactory approxi-
mation to the solution, e.g., when the model is used in some ex-
ploratory study where an extremely high accuracy is not warrant-
ed. In general the user is advised not to insist on a too stringent
value for «.

Other convergence criteria, such as the length of g, the reduc-
tion of: the criterion function f, the amount of changes of the un-
knowns ete., have been employed in various iterative minimization
algorithms. However, it is not rare to find that a “nonsignificant
reduction” of the criterion function f at a particular iteration is
achieved far from the actual minimum so that solution can still
be improved and the size of g remains significantly large. Similar-
ly, the length of g and certain other combined indices of the total
changes in the unknowns at an iteration may be too vague as
criteria for confident judgment of the convergence.

We adopted the maximum gradient element as a stopping
criterion. Upon exit, these routines print the gradients as well as
the gradual reductions of f in the searching paths for inspection
by the user. This information enables the user to decide how satis-
factory a solution is for his purposes or whether to continue the
iterations in an effort to improve the solution.

Finally we note that in the method of conjugate gradients
some constant g8;, which is the ratio of the squared length of two
gradient vectors (eq. [23]), must be calculated at each iteration.
Hence care must be taken that the denominator g/g; does not ap-
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proach zero to cause arithmetic errors (overflows), and at each
iteration the length of the current gradient g; should be checked.
If it is near zero (e.g., less than 10—20 since the numerator is also
negligible in the vicinity of a minimum), the process will termi-
nate and the current point is used as an estimate of the minimum.

Empirical comparison of different algorithms. In addition to the
methods described above (CIJGMC and CJGMI), a subroutine
FMFPC (which is based on the method of deflected gradients,
Fletcher and Powell, 1963) was adapted for the generalized metric
unfolding problem. Two more subroutines, GRDMC and CIGMC,
based on the original modified gradient method and conjugate
gradient method respectively, were also written. We thus have ex-
perimented with five subroutines (GRDMC, GRDMI, CIGMC,
CJGMI and FMFPC) and applied them to several constructed data
sets. The comparisons among them provide a basis for our choice
among these algorithms. In Table 2, these five routines are com-
pared in terms of their convergence speed for two problems (a)
and (b) (described in Table 2). The problems chosen ‘were of dif-
ferent size in order to study the relation of the efficiency to the
size of a problem.

The starting point was generated in all ¢ases from the Eckart-
Young decomposition of C;s as discussed in (i) of the previous
section. The convergence criterion was « = .0005 for the first four
routines. The subroutine FMFPC has a built-in criterion (the
length Ig| of g, |g| < 1078), The following four measures are pre-
sented for comparison: (i) the processing time { used for the total
iterative process (from entering to the exit of the iterations); (ii)

the criterion function ]"\mm upon exit of the process; (iii) the total
number of iterations n; (for CJGMC and CIGMI, n, = »xN); and
(iv) the maximum absolute magnitude g,,., of all the elements‘ in
the gradient vector upon exit. Note that », is not a very good index
of efficiency, because different amounts of computations are in-
volved per iteration for different routines. Hence, a medningful
comparison should be based on ¢.

For the smaller problem (a), CIJGMI and GRDMI are fastest
in convergence, FMFPC is second. Both GRDMC and CJGMC fail-
ed to converge within a minute. For the bigger problem (b),
GRDMC and CJGMC again failed to converge. GRDMI did not
converge within the specified number of iterations (5000) and took
longer than for CIJGMI and FMFPC to converge. FMFPC was
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Table 2. Comparison of GRDMC, GRDMI, CJIGMC, CIGMI, and FMFPC for
the Generalized Metric Unfolding Problem

Problem (2): An example of fallible data from Schénemann (1970a, Table 3,
p. 363f). A set of column constants /= (—-5,~10,~15,~4,~8)
is introduced to yield A;s@* = A1y + j 7,/ to be used in the
present problem. p=8, g=b, m=2.

Problem (b): An exact case (f,,;, =0) with r/ =&’ constructed for testing

: the subroutines. p=11, ¢=8, m=3. A solution should reproduce
the between and within set distances exactly and the vector of
column constants  should be null.

t: Time in seconds spent in the iterative process alone.

A A A
;‘:Mn: Criterion function given the output configuration X, Y, and .
n,: Total number of iterations (in CJGMC and CJ GMI, n,=nXN).
Maximum (in magnitude) of the elements in the gradient vector g given
A A A ’
X,Y and ;.
* in entry g,,,,: fail to converge by the eriterion g = .0005 (with the exception
of FMFPC where the criterion is [g] < 10—8).

.
gmaw *

A
routine t Fmin 7y Yinan
GRDMC 87.969 66.3375 3000 1.3483*
problem (a) GRDMI 12.136 63.2568 362 .0005
p=8,0=bm=2 CIGMC T7.793 63.2568 960 .0261*
fallible CJGMI 11.431 63.2568 92 .0004
FMFPC 15.176 63.2568 88 .0018
GRDMC 298.819 2.11051 5000 .16356*
problem (b) GRDMI 349.212 1.87964 X102 5000 .0452%
p=1l,g=6m=8 CIGMC 280.426 4,28394 X102 1740 1.6045%
exact CIGMI .- 239.085 1.21012X310-7 907 0004

FMFPC 158.106 9.15695X 1011 259 .0019

faster than CIGMI for this particular problem. Nevertheless, we
are content with the performance of CJGMI because the excessive
core storage requirement makes FMFPC an impractical routine
for bigger problems.

All these routines can be adapted o provide L.S. solutions for
the metric unfolding problem which differs from [17] only in that
all ¢ =0. We therefore have three routines GRDM, CJGM and
FMFPM (revised from FMFPC) for this problem. Table 8 gives
a comparison of their efficiency. For problems (a) and (b), CJGM
did best. For problem (b), FMFPM is more efficient than GRDM,
but the convergence rates in both do not differ significantly for
the smaller problem (a).

We therefore concluded that for the metric unfolding prob-
lem the intervening conjugate gradient is to be preferred. The
column constants introduce complications in the generalized prob-
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Table 3, Comparison of GRDM, CTGM, and FMFPM for the Metric
Unfolding Problem
Problem (a): A fallible case from Schénemann (a metric unfolding problem
corresponding to problem (a) in Table 2). p=8, g=5, m=2,
Problem (b): An exact case (problem (b) in Table 2 treated as a metric
unfolding problem). p=11, g=6, m=3.

A
Ly Fonins P Imas® 28 explained in Table 2.

##;F = 1.68156X10~9 reached at n, = 143 or ¢ ~ 60,

min

A

routines t Fmin % [/ fpn
problem (a) GRDM 9.235 82.2515 323 0005
p=8,q=bm=2 CIGM 6.068 82,2515 76 0004
fallible FMFPM 9.775 82.25615 4 .0001
problem (b) GRDM 208.676 1.23115X10—7 3501 0004
p=11,g=6;m=8 CIGM 86.645  5.13554X10—9 233 0005
exact FMFPM 67.900 1.40235X10~—28*%* 154 .0001

lem [17]. In this case, the superiority of CJGMI is less pronounc-
ed, especially for the bigger problem, but it still is the most satis-
factory algorithm at the present stage of our knowledge. The oc-
cagsionally somewhat better convergence of FMFPC does nof con-
vince us of its absolute superiority, since the storage problem often
becomes unmanageable when the number of unknowns is large,
as it is likely to be in the applications to the present model. The
simpler intervening modified gradient method was found to per-
form satisfactorily for most problems of moderate size.

An iterative algorithm is usually more time-consuming than
an algebraic solution where it is applicable. However, this fact does
not vitiate the value of iterative L.S. algorithms. The L.S. solution
for the present problem [17] has its own merits. (i) It is robust;
(ii) it does not impose as severe restrictions on the number of
points in each set for a solution fo be possible; (for example, a
matrix of between set distances of two sets each having three
points in @ two-dimensional Euclidean space (p=3, ¢=38, m=2)
can be solved by the present L.S. routines, but it should be pointed
out that the solution might not be determined in this case); (iii)
its solution possesses a clearly defined L.S. property with the loss
function f.

A final word on the problem of local minima. So far as we
presently know local minima do not seem to arise as long as there
are sufficiently many points (e.g., enough for a determinate alge-
braic solution). Of course, any local minimum problem which
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arises in the metric case may also arise in the nonmetric case.
There might even be more local minima in the latter due to the
greater degree of indeterminacy. The user is warned that the pre-
sent L.S. algorithms, like any others, do not preclude the possibili-
ty of converging to a local minimum.

In Table 4, a numerical example of fallible data is given to
illugtrate the present L.S. solution for problem [17]. The between
set squared distance matrix A;.®* (determined up to a set of col-
umn additive constants +) is generated from the data A;»® con-

Table 4. Numerical Example of a L.S. Solution of the Generalized Metric
Unfolding Problem in the Fallible Case (p =8, ¢ = 5, m = 2)

16 9 9 16 36 11 -1 -6 12 28
9 81 81 4 16 4 71 66 0 8
9 25 36 16 4 4 15 21 12 4
Aig®@=| 4 16 16 9 9 A®@*=| 1 6 1 5 1
16 4 9 25 25 11 6 -6 21 17
16 1 4 25 25 11 -9 -11 21 17
9 81 81 9 4 4 7 66 5 4
16 36 49 16 4 11 26 34 12 4

7= (=510 =15 =4 —8) A% m A3 +J, 1/

X/ = ~2.5215 3.8289 1241 -.8115 -2.6228 -2.9181 4.0461 8748
1.9157 1.5896 -1.4811 .0847 -1736 -.1312 -.0832 -1.7209

8768 -.9724 7766 1.7718 --2.4488

Y/ = 2.1191 -4.0567 -3.9715 2.7849 38,1233 ]

A

= 63.2668

-f min

L. S. estimates of column constants and coordinate vectors (with origin at the
joint centroid) :

-,? = (-5.8834 -12.9899 -15.3569 -5.1509 -8.7033)

K7 = | —2.1182 48220 4479 4438 -2.3477 -2,5423 5.5038 1.2073
2.5283 2.2949 -2.2084 -1915 -.9967 -3929 -.1597 -2.8492

§7 w | 14481 —4.5633 —4.5417 2.0711 2,5559
9283 1593 1.0129 1.5146 -1.3214

(Table continued on next page.) s
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Reproduced within and between set distances:

0.
6.4452 0.
. 5.3783 '5.9372 0.
= | 3.1897 b5.3763 22006 0. symmetrie
A 3.6276 17.4385 3.0448 2.0871 0.

2.9469 7.8727 8.4956 2.1081 .6345 0.
7.1449 24613 4.5417 4.9477 6.9024 17.0500 0.
6.3185 6.0141 .9970 38.1288 4.0087 4.4826 4.2544 0.

6.1089 0. symmetrie
Ago =1 59904 1.1724 0.

8555 6.8423 6.6818 0.
25077 T.2184 7.4716 2.8772 0.

3.9067 38.6297 2.8557 4.3090 6.0522
3.1831 9.2189 8.9569 2.3832 4.0249
8.2875 5.4120 5.9364 4.0569 2.2851
A ] 21985 4.1196 4.2712 3.0891 3.2056
A12= | 42560 2.3686 2.9753 5.0826 4.9143
42035 2.0344 24442 4.9922 5.1821
3.2437 9.0671 9.1212 2.9532 2.2680
3.7852 6.3667 6.9259 4.4485 2.0378

Reproduced between set squared distances up to column constants:

9.4289 1850 —7.2022 13.4166 27.9256
4.2990 71.9979 64.8687 5288  7.4967
49744 16.2998 19.8836 11.3075 -3.4817
3 (2% = | ~1.0001  3.9809  2.8365 4.0850 1.5716
12 12,2801 ~-7.8797 -6.5043 20.6816 15.4470
11.8356 -8.8512 -9.3830 19.7715 18.1508
4,6879 69.2218 67.8396 8.5707 -3.5595
8.4948 27.5456 82.6110 14.6384 -—4.5505

structed by Schonemann (1970a, Table 3, p. 363f). The matrix
Ars®@F = A1 + T,/ (see Table 4) is used as input to the above
five subroutines for problem [17]. All of the routines yield iden-
tical solutions, so that the reproduced between and within set dis-
tances are the same in all cases. This means that the L.S. estimates
of X, Y obtained from these routines are related to one another
by a rigid motion. The specific contents of Table 4 are taken from
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the output of CJGMIL. The agreement among these results suggests
that there was no local minimum in this case. To confirm this,
several other, arbitrary, starting configurations were tried which
all led to the same solution.

EMPIRICAL VERIFICATION OF THE S&W MODEL: AN ANALYSIS OF
THE 1968 PRESIDENTIAL ELECTION

A fairly substantial body of voting data were collected, nation-
wide, by the Survey Research Center, Institute of Social Research,
The University of Michigan, at the time of the 1968 Presidential
election. These data are based on a large and carefully chosen
sample, and they include much stratifying information about the
political and socioeconomic background of the interviewees. Thus
they seem ideally suited for an analysis by our model. Moreover,
previous research by Weisberg and Rusk (1970) has already es-
tablished a rather thorough understanding of the substantive con-
tent of these data by means of other methods of analysis, which
can be used to check and corroborate the results of our own
analysis.

Description of the Study

The data were taken from interviews of 1673 respondents in
the 1968 election study of the University of Michigan’s Survey
Research Center. The respondents were asked to rate twelve can-
didates on a 0-to-100 (“feeling thermometer”) scale (see Weisberg
and Rusk, 1970). For a detailed description of the data collecting
procedures the reader is referred to “The SRC 1968 American
National Election Study” (Inter-Consortium for Political Research
Edition, 1971, SRC 45528, Ann Arbor, Michigan). It was assumed
that an individual’s preference order of the candidates corresponds
to the order of the scores given to the candidates. Weisberg and
Rugk computed Pearson correlations from these preferential rat-
ings and analyzed them as similarity measures with Kruskal’s
(1964a,b) nonmetric scaling method.

Since the data were incomplete for some respondents, only
1182 subjeets could be in this reamalysis. The subjects were clas-
sified into 22 relatively homogeneous subgroups in terms of their
race, party identification, geographical region, and education.
Since there were not enough Negroes in this sample, they were
divided into only two groups (by region). The whites were broken
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down into 20 groups according to the above stratifiers. Since there
were only four people in the subgroup SRSH (whites, strong Re-
publican, south, higher education), this subgroup had to be omitted
from the reanalysis. The 12 candidates and the 21 subgroups in-
cluded in this study are given in Table 5.

Table 5. 1968 Election Study: The 12 Candidates and 21 Political Subgroups

Candidates:

1.. G. Wallace (W) 2. H. Humphrey - (H) 3. R. Nixon (N)
4. E. MeCarthy (Mc) 5. R. Reagan (Rg) 6. N. Rockefeller (Rk)
7. L. Johnson (J) 8. G. Romney (Rm) 9. R. Kennedy (K)
10. E. Muskie (M) 11. S. Agnew (A) 12. C. LeMay (L)
Subgroups:
Descriptions Sample size
(Race, Party, Region, and Education) N;
1. Negro, South (NS) 88’
2. Negro, Non-south (NN) (i
3. White, S. Dem., South, High (SDSH) 17
4, White, S. Dem., South, Low (SDSL) 48
5. White, W. Dem., South, High (WDSH) 27
6. White, W. Dem., South, Low (WDSL) 9
7. White, S. Dem., Non-south, High (SDNH) 21
8. White, S. Dem., Non-south, Low (SDNL) 85
9. White, W. Dem., Non-south, High (WDNH) 65
10. White, W. Dem., Non-south, Low (WDNL) 180
11. White, Indept., South, High (ISH) 8
12. White, Indept., South, Low (ISL) 27
13. White, Indept., Non-south, High (INH) 25
14, 'White; Indept., Non-south, Low (INL) 46
15. White, S. Rep., South, Low (SRSL) 13
16. ‘White; S. Rep., Non-south, High (SRNH) 40
17. White, S. Rep., Non-south, Low (SRNL) 60
18. White, W. Rep., South, High (WRSH) 34
19. ‘White, W. Rep., South, Low (WRSL) 36
20. ‘White, W. Rep., Non-south, High (WRNH) 90 .
21. White, W. Rep., Non-south, Low  (WRNL) 117

Abbreviations: S—strong, W—weak, Dem.—democrat, Rep.—republican and
Indept.—independent.

Fit of the Model

Each respondent’s relative scores for the 12 candidates were
converted into rank orders of preferences. These rank orders were
then transformed into p.c. probabilities for each subgroup which
served as input data. The BTL scale values of the 12 candidates
for each subgroup are presented in Table 6. The reader is remind-
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ed that these scale values are scaled o multiply to unity for each
subgroup and thus are not comparable across subgroups. The fits
of the BTL model to the p.c. probabilities at the first stage were
satisfactory.

At the next step the BTL scale values were mapped into be-
tween set squared distances (up to column-specific constants). The
L.S. solution of the generalized metric unfolding problem was then
applied. The five largest Eckart-Young roots of the matrix of
quasi-scalar products were 18.34, 6.82, 3.92, 2.11 and 1.73. A two-
dimensional analysis was found to be unsatisfactory (the chi-
square test rejected a fit with upper tail probability = = .00). The
output coordinates X and Y for the 12 candidates and the 21 sub-
groups’ ideal points, respectively, are given in Table 7. The overall

Table 7. Coordinates for Candidates and Subgroups Ideal Points in
Three Dimensions

X for stimulus points Y for ideal points
(candidates) (subgroups)
dimensions dimensions
1 2 3 1 2 8
W -1.17 -1.40 -31 NS .66 21 -39
H 1.41 -31 .24 NN 74 .51 —42
N ~1.21 A5 -09 SDSH 21 -.53 29
Me 07 .53 1.42 SDSL 14 —59 .20
Rg -93 .56 1.19 WDSH -.06 -22 10
Rk -.03 .63 1.89 WDSL -11 ~43 A2
J 1.02 ~.89 -80 SDNH 48 22 -.08
Rm -12 J1 1.47 SDNL 37 -.16 -.02
K 1.16 -A46 -.54 WDNH .32 20 -10
M .53 .29 1.28 WDNL .15 -12 -.08
A -96 -89 -1,05 ISH -.05 22 -.26
L —96 -1.34 -91 ISL -11 -.06 ~12
INH .03 -07 .03
INL .06 01 -.05
SRSL -25 1.14 -.92
SRNH -27 .85 -.50
SRNL —-26 .53 -39
WRSH —-34 09 -15
WRSL -25 .03 -14
WRNH -13 .28 -15
WRNL -.15 .82 -27
latent roots of X" X, latent roots of ¥’ ¥
17.454 9.818 872 5,015 1.844 097

Compound chi-squares test for overall fit of the model:

Chi-square statistic = 1139.847
d.f. = 1155

Upper tail probability [Pr(x? ;55 = 1139.847)] = .619
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fit of the model to these data is now satisfactory as judged from
the compound chi-square test (= = .619).

Interpretation of the Results

Subspace checks indicated that the ideal points lie in a two-
dimensional subspace of the three-dimensional common space (the
third latent root of Y,’Y, was nearly zero, where Y, is Y translat-
ed to its own centroid). Under such circumstances, the two-dimen-
sional joint subspace is interpretable as long as it is kept orthogon-
al to the extrancous dimension for the candidates (Schonemann
and Wang, 1972). Hence, X and Y were rotated so that their
dimensions coincide with the principal axes of Y. The resulting
coordinates are given in Table 8. The candidates (represented by

Table 8. Subspace Rotation: Coordinates at the Principal Axes Position
for the Ideal Points

X, for stimulus points Y, for ideal points
candidates dimensions subgroup dimensions
1 2 3 1 2 3
w 99 -1.38 —97 NS 10 .63 —14
H .8 1.24 14 NN -40 75 -.00
N -20 -1.25 .05 SDSH .80 .08 04
Mc 49 -09 1.56 SDSL .79 .04 -.08
Rg .18 ~-1.05 1.35 WDSH .40 -18 .03
Rk 37 -18 1.58 ‘WDSL 57 —26 -.07
J .66 .89 -1.06 SDNH .02 42 .13
Rm 32 ~26 1.69 SDNL .35 .26 .02
K 46 1.06 —.61 WDNH .00 .26 .09
M .69 .34 131 WDNL .28 .05 -01
A 21 -1.04 -1.31 ISH -16 -.08 -.04
L 66 - -111 ~1.44 ISL 14 -.19 -07
INH 25 =07 05
INL 15 -.02 .03
SRSL. -1.31 -.09 -10
SENH -85 -19 .09
SENL —52 -23 .01
WRSH  -.04 —-40 -.02
WRSL .02 -32 -.04
WRNH -.16 -.16 09
WRNL  -26 -17 .01

z) and the subgroups’ ideal points (represented by .) are plotted
in Figure 2 with respect to the two principal axes of Y. These two
axes are then rotated and translated for identification of the two
underlying dimensions.

The two dimensions could be identified as a Republican-
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Robert Kennedy
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Johnson
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. WDgﬁcarthy Rockefeller
g T WDSL

Republican

* LeMay

Nixon x
Wallace

Conservative

Figure 2. Election study: Candidates and subgroup’s ideal points in two-
dimensional joint subspace.
Democrat and a Liberal-Conservative dimension. The ordering of
the candidates’ projections on the Republican-Democrat dimen-
sion is Nixon, Reagan, Agnew, (Romney, LeMay), (Rockefeller,
Wallace), McCarthy, Muskie, Kennedy, Johnson, Humphrey. This
ordering corresponds closely to their party identifications. The
ordering of the projections of the ideal points on this dimension
reflects the strength of party affiliation. On the second dimen-
sion, it shows (Humphrey, Johnson, Kennedy) on one end, (Le-
May, Wallace) on the other extreme, and (Muskie, McCarthy,
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Rockefeller, Romney, Nixon, Reagan, Agnew) in the middle. The
projections of the candidates and the subgroups on this second
dimension suggest that this dimension expresses a Liberal-Con-
servative stand on domestic rather than foreign policies.

Weisberg and Rusk (1970) found that a third dimension in
the nonmetric analysis of the candidates space had little explana-
tory power. Consequently, they reported also a two-dimensional
space for the candidates which is very similar to our present re-
sults. The candidate clusters [(H,J,K), (Mc,Rm,Rk), (N,Rg,A),
and (L,W)] showed up in both analyses. A major difference is
that in the present case we are able to embed the subgroups and
the candidates in a joint space. This provides a more complete
picture for identifying the underlying dimensions. In addition, the
stronger metric model makes more specific predictions about the
probabilities.

Prediction of Choice Probabilities
P.c. probabilities can be predicted from the present model

[5] for the total population. Within group p.c. probabilities /fbik,j

can be computed from eq. [5] with 3%- and c/l\%-,- based on the fitted
X and Y. similarly, any choice probabilities within a subset of
candidates can be computed as long as the model is interpreted
within the framework of the Luce choice axiom. For example, the
predicted choice probability for assigning first choice 1o S;, given

the three stimuli S;, Si, S, @(i,k,l!P,-) for a subgroup with ideal
point P; is given by

i8I 1|P;) = B/ (aus+ s+ Q1y), (SipSw,S1) o5,
where
(’i@j = exXp ("'82@']‘) .

It is of interest to compare such predicted p.c. and choice
probabilities p’;k, @-(i,k,l) among the three presidential candi-
dates in 1968 from the results of the present analysis with the
corresponding estimates p*;;, p.*(4,k,l) which can be obtained di-

rectly from the interview records. The overall predicted probabili-
ties were computed from the formula of conditional probabilities:

%\)ik=2_'i;)i§ik.i ’j=172,---,21 3
A, ! AA L,
and p‘i(z:k:l) = %w]pi(z’k:llpi) 7
)
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where @’u\, is the estimated (“marginal”’) proportion of each sub-
group in the population which can be estimated from the sample
in this study. Since the probability of the strata was proportional
to the 1960 population of each stratum, it can be assumed to be a
reasonably representative sample for the purpose of computing

the estimates of '&3,-.
Table 9 gives the overall probabilities as predicted from the

Table 9: Predicted Versus Estimates Pair Comparison and Choice Probabilities
for the Three Presidential Contenders. (The estimates of the p.c.
and choice probabilities from the actual votes recorded for the
sample of this study are presented below in paretheses.)

P.c. probabilities (ﬁik VS D7)

w H N
w — 2311 1422
(.2092) (.1855)
H 7689 — 4211
(.7908) (.4626)
N 8578 5789 —

(.8145) (.5374)

Choice probabilities [p,(i,k,1) vs. p* (ik,]) ]

w H N

0797 .3891 5311
(.1091) (.4122) (.4788)

fitted S&W model as well as the corresponding estimates obtained
from the actual votes recorded in the data. The predicted values
for preferring Nixon over the other two candidates are slightly
higher than the actual estimates from the sample. One possible
explanation of this might be a “bandwagon effect” in favor of
president-elect Nixon, since the scores on the “feeling thermome-
ter” were collected after the election. Consequently, the predicted
choice probabilities in the same table show a similar bias—slightly
higher predicted value for Nixon, lower for Humphrey and Wal-
lace. Of course, other explanations for these small but apparently
systematic discrepancies are possible. For example, the presence
of a vice-presidential running mate on the ticket might have in-
fluenced the actual voting outecome. In any case, the fact that the
actual discrepancies, though apparently not random, are quite
small leads us to conclude that the overall fit of the model in all
its aspects is quite encouraging.
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Discussion

It is contended that the results of this empirical study lend
support to the expectation that the model can become a useful and
practical research tool in areas where the underlying Coombs’ un-
folding paradigm is intuitively plausible.

In the present instance of political choice behavior this pre-
mise is satisfied. It was found that the analysis of the same data
by two rather different techniques (the correlational technique
followed by a nonmetric scaling analysis employed by Weisberg
and Rusk versus the probabilistic treatment within the present
stronger metric model) led to practically identical results for the
description of the candidate space. Therefore both strategies ap-
pear to support each other where they cover the same ground. The
present model provides additional information about the sub-
groups and, moreover, enabled us to derive probability predictions
which could be verified independently. There can be little doubt
that it proved to be an adequate model for describing these 1968
election data. In addition to yielding richer predictions and a more
complete description of the underlying multidimensional choice
space, the present model has the further advantage of being ex-
plicitly falsifiable, in part and in total, in terms of well understood
statistical tests.

SUMMARY AND CONCLUSIONS

As stated in the introduction the present work was primarily
concerned with the fallible case of the model. In particular, an at-
tempt was made to develop a more robust and reasonably fast
converging least squares solution for the generalized metric un-
folding problem.

The results reported in the section entitled “The Fallible Case”
strongly suggest that, given the storage limitations imposed by a
large number of unknowns (which rule out use of second order
derivatives in actual applications), the “intervening conjugate
gradient method” (CIGMI) is probably the most useful minimiza-
tion technique for the present purpose. This method approaches ip
overall convergence the Fletcher and Powell method, which re-
quires storage for second order derivatives. There still is room for
for further improvement on this technical issue. The larger data
iterative process is still rather slow and thus might have to be
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terminated before the gradients vanish, even for the Fletcher and
Powell method. However, the present results suggest that any
further progress on this technical issue is unlikely to result from
experimenting with other minimization techniques. Rather, it is
feared, that only a drastic change in the definition of the loss
function, or perhaps, further work on a better starting configura-
tion can further speed up convergence. Both these posgibilities are
likely to be difficult technically and of course are not assured of
any success.

Finally, the empirical example in the preceding section lends
support to the expectation that the present model has a. good
chance of becoming a useful research tool in areas (e.g., consumer
behavior and political choice behavior) where the basic choice
paradigm of the unfolding model is likely to hold, at least approxi-
mately. The results of this particular empirical study closely match
those obtained by Weisberg and Rusk in their original, technically
quite different, analysis of the same data. It was also seen that an
analysis by the present, metfric, model yields more detailed predie-
tions, which can be checked independently. Hence, the stronger as-
sumptions of bhe present model, if met, are rewarded with more
detailed and informative results. ‘
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