HOW TO USE THE BLACK BOX

by

Keith T. Poole
Graduate School of Industrial Administration
Carnegie-Mellon University
Pittsburgh, PA 15213

3 August 1998

Abstract

This paper is meant as a supplement to my August, 1998 AJPS article "Recovering a Basic Space From a Set of Issue Scales." I promised the editor and the reviewers of my article that I would provide and support the computer programs used in the article. Accordingly, this paper is part of a package of material that contains the FORTRAN code and the executables of the programs used in the article.

1. Introduction

This paper is meant as a supplement to my $\boldsymbol{A J P S}$ article "Recovering a Basic Space From a Set of Issue Scales. The body of the paper shows material deleted from the original paper to conserve journal space as well as additional empirical examples.

Appendices A, B, and C show researchers how to use the various computer programs that implement the model shown in the article.

Section 2 shows how the method I develop in my $\boldsymbol{A J P S}$ article is related to Factor Analysis. Section 3 reports some Monte-Carlo work that was cut out of the final version of the paper. Section 4 shows the relationship between the method and Aldrich-McKelvey scaling (1977). In effect, the method can be used to perform an Aldrich-McKelvey scaling of an issue scale in more than one dimension. Finally, Section 5 shows some additional empirical applications.

2. Relationship With Standard Factor Analysis

A standard method of analyzing a rectangular data matrix is to compute a correlation matrix between variables (the columns of the data matrix) and then factor analyze (principal components or maximum likelihood) the correlation matrix. Factor analysis has its own special nomenclature and the method of its presentation varies from author to author. However, in its simplest form, principal components, it is simply eigenvalue/eigenvector decomposition and its connection to singular value decomposition is easily shown.

For example, suppose the n by m data matrix, \mathbf{X}, has no missing data and is standardized such that each column sums to zero and the sum of the squared entries of the column sums to one. Note that this is the transformation

$$
\begin{equation*}
\mathbf{x}_{\mathrm{ij}}=\frac{\left(\mathbf{x}_{\mathrm{ij}}^{*}-\overline{\mathbf{x}}_{\mathrm{j}}\right)}{\mathbf{n}^{1 / 2} \mathbf{S}_{\mathrm{j}}} \tag{1}
\end{equation*}
$$

where $\mathbf{x}_{\mathrm{ij}}^{*}$ is the original matrix entry, $\overline{\mathbf{x}}_{\mathrm{j}}$ is the mean of the jth column, and $\mathbf{s}_{\mathbf{j}}$ is the standard deviation of the jth column. Given the transformation given in equation (1), the Pearson correlation matrix is simply $\mathbf{R}=\mathbf{X}^{\prime} \mathbf{X}$.

Alternatively, most authors (e.g., Harman, 1970; Van de Geer, 1971) assume that \mathbf{X} is in standard deviation form. That is:

$$
\begin{equation*}
\mathbf{x}_{\mathrm{ij}}=\frac{\left(\mathbf{x}_{\mathrm{ij}}^{*}-\overline{\mathbf{x}}_{\mathrm{j}}\right)}{\mathbf{s}_{\mathrm{j}}} \tag{2}
\end{equation*}
$$

Written in this form the Pearson correlation matrix is $\mathbf{R}=\frac{\mathbf{X}^{\prime} \mathbf{X}}{\mathbf{n}}$. This approach has the awkward result of having the $1 / \mathrm{n}$ in various equations. Accordingly, I use the simpler
approach of equation (1). This has no material effect on the discussion below except to simplify the expressions.

Let the singular value decomposition of \mathbf{X} be $\mathbf{U} \Lambda \mathbf{V}^{\prime}$, where \mathbf{U} is an n by m matrix such that $\mathbf{U}^{\prime} \mathbf{U}=\mathbf{I}_{\mathbf{m}}, \Lambda^{1 / 2}$ is a m by m diagonal matrix of singular values, and \mathbf{V} is a m by m matrix such that $\mathbf{V}^{\prime} \mathbf{V}=\mathbf{I}_{\mathbf{m}}$.

To perform a principal components analysis compute the correlation matrix,

$$
\begin{equation*}
\mathbf{R}=\mathbf{X}^{\prime} \mathbf{X}=\mathbf{V} \Lambda^{2} \mathbf{V}^{\prime} \tag{2}
\end{equation*}
$$

and then perform a standard eigenvalue/eigenvector decomposition of \mathbf{R}. Note that the eigenvalues of \mathbf{R} are the squared singular values of \mathbf{X}. The factor matrix is the m by m matrix $\mathbf{V} \Lambda$ and the factor scores are the n by matrix \mathbf{U}, where \mathbf{U} is from the singular value decomposition of \mathbf{X}. Using the terminology of Harman (1970):

$$
\mathbf{F}=\mathbf{U} \text { and } \mathbf{A}=\mathbf{V} \Lambda
$$

In terms of the model I use in the $\boldsymbol{A J P S}$ article,

$$
\mathbf{X}_{0}=\left[\Psi \mathbf{W}^{\prime}+\mathbf{J}_{\mathbf{n}} \mathbf{c}^{\prime}\right]_{0}+\mathbf{E}_{0}
$$

let $\underline{\mathbf{c}}^{\prime}=\underline{\mathbf{0}}$, no missing data, and ignoring the error term for the moment, then

$$
\begin{equation*}
\Psi=\mathbf{U} \Lambda^{1 / 2}=\mathbf{F} \Lambda^{1 / 2} \text { and } \mathbf{W}=\mathbf{V} \Lambda^{1 / 2}=\mathbf{A} \Lambda^{-1 / 2} \tag{3}
\end{equation*}
$$

so that Ψ and \mathbf{W} are simply related to the factor scores and the factor matrix, respectively.

Indeed, even when \mathbf{X} is in the form of the $\boldsymbol{A J P S}$ paper, $\left[\Psi \mathbf{W}^{\mathbf{\prime}}+\mathbf{J}_{\mathbf{n}} \mathbf{c}^{\mathbf{\prime}}\right]_{0}+\mathbf{E}_{0}$, the estimated \mathbf{W} matrix, $\hat{\mathbf{W}}$, will be highly correlated with the factor matrix, A. For example, Table 1 shows the SPSS output for a principal components analysis of the 1980 issue scale example shown in the $\boldsymbol{A J P S}$ paper. The data set was read into SPSS and the correlation matrix was computed using the pair-wise deletion option. The first part of the table shows
the eigenvalue table and the second part of the table shows the Factor Matrix, \mathbf{A}, labeled "Component Matrix" in the SPSS output.

The r-squares between the 3 columns of the Factor Matrix shown in Table 1 and the columns of the $\hat{\mathbf{W}}$ shown in Table 4 of the $\boldsymbol{A J P S}$ article are .929 , .802 , and .223 respectively. In other words, the first two dimensions are essentially the same. This makes sense because I found that only two of the fourteen $\hat{\mathbf{w}}$'s for the $3^{\text {rd }}$ dimension to be statistically significant whereas seven of the fourteen $\hat{\mathbf{w}}$'s for the $2^{\text {nd }}$ dimension and all for the $1^{\text {st }}$ dimension were statistically significant. The individual placements appear to be at most two-dimensional.

Further evidence of the data being at most two-dimensional are the scree plots shown in Figure 1. The dotted line in the upper plot shows the eigenvalues of the correlation matrix from the SPSS output. The solid line in the upper plot shows the squared singular values for the data transformed as in equation (1). That is, let $\mathbf{X}^{*}=\mathbf{X}_{\mathbf{0}}$ for the nonmissing entries and let $\mathbf{X}^{*}=\Psi \mathbf{W}^{\prime}$ (using three dimensions) for the missing entries. Column means were computed using the non-missing entries of $\mathbf{X}_{\mathbf{0}}$, and each entry of \mathbf{X}^{*} was transformed as shown in equation (1). The singular values of this matrix were then squared to make them comparable to the eigenvalues extracted from the correlation matrix. These two series are virtually identical with the values of the eigenvalues/squared singular values falling off fairly smoothly from the elbow at the $3^{\text {rd }}$ value through the $14^{\text {th }}$ value. This is a clear indication that the data are most likely to be two-dimensional.

Table 1
SPSS Output for 1980 Issue Scale Example

Figure 1

Eigenvalues vs. Singular Values

The lower plot shows the singular values of \mathbf{X}^{*} minus the actual column means, that is, $\mathbf{X}^{*}-\mathbf{J}_{\mathbf{n}} \underline{\mathbf{c}}^{\mathbf{\prime}}$, where $\underline{\mathbf{c}}$ is the vector of actual column means. The column means are subtracted from \mathbf{X}^{*} because if the means are large numerically - as they are for issue scales - then the first singular value of \mathbf{X}^{*} will be very large compared to the others. This results from the fact that the sum of the squared singular values is equal to the sum of the squared values of the matrix. That is:

$$
\sum_{\mathrm{j}=1}^{\mathrm{m}} \lambda^{2}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \sum_{\mathrm{j}=1}^{\mathrm{m}} \mathbf{x}_{\mathrm{ij}}^{2}
$$

Here the singular values fall off a little less smoothly. The decline from the $2^{\text {nd }}$ to the third value is not as dramatic as it is for the eigenvalues of the correlation matrix, but the plot clearly indicates that the data is at most three-dimensional (see the output for the 1980 issue scale example in Appendix A). In this context, a singular value decomposition of \mathbf{X} yields essentially the same information as a principal components analysis of the correlation matrix.

3. Additional Monte Carlo Tests of the Model

This subsection was deleted from the final version of the paper in order to conserve journal space. The purpose of these tests is to show the ability of the procedure to estimate the Eckart-Young lower rank approximation matrix of an arbitrary matrix of real numbers with missing entries. The table and equation references are to those in the AJPS paper. The table deleted along with this subsection was the original Table 4. Here I will refer to it as 4^{*} to avoid confusion with the AJPS article.

Estimating Eckart-Young Approximation Matrices

The Monte Carlo results reported in Tables 2 and 3 show that the procedure does an excellent job of estimating Ψ, \mathbf{W}, and \mathbf{c} when the observed data are in the form shown in equation (1). The purpose of this subsection is to show that the procedure also can be used as a general-purpose tool to obtain the Eckart-Young approximation matrix $\mathbf{U} \Lambda_{s} \mathbf{V}^{\prime}$ of any rectangular matrix of real numbers with missing entries.

In this application $\hat{\psi} \hat{\mathbf{W}}^{\prime}+\mathbf{J}_{\mathbf{n}} \underline{\hat{\mathbf{c}}^{\prime}}$ must be used with some caution. Recall that if a matrix \mathbf{X} is of rank s, then subtracting off the column means, $\mathbf{X}-\mathbf{J}_{\mathbf{n}} \mathbf{c}^{\mathbf{c}}$, in most circumstances, does not change the rank. ${ }^{1}$ However, the converse is not necessarily true. By construction, $\hat{\psi} \hat{\mathbf{W}}^{\prime}$ has rank s and the columns of $\hat{\psi} \hat{\mathbf{W}}^{\prime}$ sum to zero. Adding a vector of constants, $\hat{\psi} \hat{\mathbf{W}}^{\prime}+\mathbf{J}_{\mathbf{n}} \underline{\hat{\mathbf{c}}^{\prime}}$, will usually increase the rank to $\mathrm{s}+1$. However, the first s singular values of $\boldsymbol{?} \hat{\mathbf{W}}^{\prime}+\mathbf{J}_{\mathbf{n}} \hat{\mathbf{c}}^{\prime}$ will be quite large in comparison to the $\mathrm{s}+1^{\text {st }}$ singular value. If the observed data are in form given by equation (1), then the closer $\hat{\psi} \hat{\mathbf{W}}^{\prime}$ is to the true $\Psi \mathbf{W}^{\prime}$ (which, by construction, is $\mathbf{X}-\mathbf{J}_{\mathbf{n}} \mathbf{c}^{\prime}$), the smaller the $\mathrm{s}+1^{\text {st }}$ singular value. In addition, if the column means are not of interest, then the Monte Carlo results in Table 2 show that $\hat{\Psi} \hat{\mathbf{W}}^{\prime}$ is an excellent approximation of the true $\Psi \mathbf{W}^{\prime}$ matrix even at substantial levels of error and missing data.

In order to test the ability of the procedure to estimate the Eckart-Young approximation matrix of an arbitrary matrix of real numbers of full rank, just the first s singular values of $\hat{\psi} \hat{\mathbf{W}}^{\prime}+\mathbf{J}_{\mathbf{n}} \underline{\mathbf{c}}^{\prime}$ were utilized. That is, if the singular value decomposition of
$\hat{\psi} \hat{\mathbf{W}}^{\prime}+\mathbf{J}_{\mathbf{n}} \hat{\mathbf{c}}^{\prime}$ is $\mathbf{U} \Lambda \mathbf{V}^{\prime}$ where Λ is an s+1 by s+1 matrix, then $\mathbf{U} \Lambda_{\mathrm{s}} \mathbf{V}^{\prime}$ was used as the approximation matrix.

Similar to the method used for Table 2, to construct \mathbf{X} of full rank m, \mathbf{U} and \mathbf{V} were obtained from a singular value decomposition of an n by matrix of uniform $[-1,1]$ random numbers. The first three singular values of \mathbf{X} were set so that when the column means are subtracted from \mathbf{X}, the singular values of the resulting matrix, $\Psi \mathbf{W}^{\prime}$, were approximately $50,35,20,5,5, \ldots, 5$. This was done so as to approximate a situation where the first three dimensions largely account for the structure of the matrix but the matrix is of full rank.

Missing data was created in the same fashion as described for Table 2.
In these tests there is no error process so the only difference between trials is the pattern of missing data. Each entry in Table 4^{*} is the average of 10 trials. The standard deviations are shown in parentheses.

Table 4* About Here

The first three columns of Table 4 show the number of rows, the number of columns, and the rank of the approximation matrix. The fourth column, r-square with Eckart-Young, shows the average squared Pearson correlation between the nm elements in true Eckart-Young matrix and the reproduced Eckart-Young matrix. The fifth column shows the average squared Pearson correlation between the true basic dimensions and the estimated basic dimensions corresponding to the rank of the approximation; that is, the average of the r-squares computed between each column of the true Ψ matrix, and its
corresponding column in $\hat{\Psi} .{ }^{2}$ Finally, the sixth column shows the percentage of missing entries.

Table 4* shows that the procedure does a good job estimating lower rank approximations when a substantial portion of the matrix is missing. Not surprisingly, the lower the level of missing data and the larger the matrix, the better the approximation. With 25 percent missing data the r-squares all exceed .97 . Even with 70 percent missing data the procedure will do a reasonable job if the size of the matrix is large enough.

4. Empirical Application Deleted From AJPS Article

This application was deleted from the final draft of the AJPS article to conserve journal space. In this application the scaling method is applied to a transposed matrix in which the number of columns is much larger than the number of rows. What I show below is that the general method developed in the AJPS article can be used to perform AldrichMcKelvey scaling of an issue scale in more than one dimension.

Aldrich and McKelvey (1977) in effect solved the Likert scale problem. In my opinion, the Aldrich and McKelvey paper is the most under appreciated achievement in political methodology. In part this is due to the fact that, as I note below, the standard error of the estimate of their model is clearly biased downwards. However, as I have argued elsewhere (Palfrey and Poole, 1987), this is an advantage not a defect! Namely, the Aldrich-McKelvey scaling method can be used as a powerful filter. Respondents who see the political universe as backward (namely, Reagan to the left of Carter), clearly have a very low level of information about politics.

The big advantage of applications like the one shown below is that a researcher can check to see if the scale really is one-dimensional. That is, scales with labeled endpoints are designed to be one-dimensional. Performing the decomposition shown below can roughly test this. Namely, the r-square in one dimension should be very large and the increment to adding a second dimension should be quite small.

Note that because the number of political stimuli being placed on an issue scale is usually not too large, this application should be done with some caution. For the 1980 scale shown below, there are only 6 stimuli. Consequently, if respondents are included that placed only 4 of the 6 stimuli, then if 3 dimensions are estimated the r-square for these respondents will be 1.0 ! Because of this I only estimated 2 dimensions with two missing responses (see Appendix C for the output files).

The one-dimensional fit of the model was an r-square of .7541 and a standard error of the estimate of .9843 . In two dimensions the r-square was .8645 and the standard error of the estimate was .8447 . These fits plus the estimated configuration shown in Table 6^{*} show, in my opinion, that the scale is indeed one-dimensional and that the second dimension is largely capturing respondent confusion about where to place Anderson on the scale.

Note that in Table 6* I show the coordinates as $\hat{\Psi}$. In the computer code I simply write out the singular vectors to make it easier to compare with the Aldrich-McKelvey coordinates (which is an eigenvector).

Analysis of 1980 Post-Election Liberal-Conservative Scale

The purpose of this application is to show the connection between the procedure developed here and the scaling method developed by Aldrich and McKelvey (1977) to analyze seven-point scales. The Aldrich-McKelvey scaling method is a one dimensional version of the model expressed in equation (1) - that is, the original model as expressed in equation (1B) applied to a transposed matrix where $m>n$. In this application I will analyze the responses to the 1980 Post-Election Liberal-Conservative seven-point scale. This is one of the fourteen scales analyzed in the previous subsection.

In the Aldrich-McKelvey framework, the matrix \mathbf{X} is an n by m matrix where the rows are the respondents' perceived positions of the m stimuli on the scale.

The model they estimate is

$$
\begin{equation*}
\underline{\psi} \mathbf{J}_{\mathbf{n}}^{\prime}+\mathbf{E}=\mathbf{X}^{\prime} \mathbf{W}+\mathbf{J}_{\mathbf{m}} \underline{c}^{\prime} \tag{17}
\end{equation*}
$$

where Ψ is an m length vector of underlying stimulus coordinates, \mathbf{W} is a n by n diagonal matrix of weights, $\mathbf{J}_{\mathbf{m}}$ is an m length vector of ones, $\underline{\mathbf{c}}$ is an n length vector of constants, and \mathbf{E} is an m by n matrix of error terms. Aldrich and McKelvey assume that the respondents correctly perceive the true underlying configuration subject to some random perceptual error, \mathbf{E}, and report a linear transformation of that true configuration. Their scaling method estimates Ψ using \mathbf{X}, and \mathbf{W} and $\underline{\mathbf{c}}$ are estimated using $\underline{\hat{\psi}}$ and \mathbf{X} with ordinary least squares.

The Aldrich-McKelvey scaling method is, in effect, an $s=1$ version of equation (1). Solving for \mathbf{X} in (17) produces

$$
\begin{equation*}
\mathbf{X}^{\prime}=\underline{\psi} \mathbf{W}^{*^{\prime}}+\mathbf{J}_{\mathbf{m}} \underline{\mathbf{c}}^{*^{\prime}}+\mathbf{E} * \tag{18}
\end{equation*}
$$

where $\mathbf{W}^{*}=\mathbf{W}^{-1} \mathbf{J}_{\mathbf{n}}, \underline{\mathbf{c}}^{*}=-\mathbf{W}^{-1} \underline{\mathbf{c}}$, and $\mathbf{E}^{*}=\mathbf{E} \mathbf{W}^{-1}$. Equation (18) is identical to equation (1) the only difference being the reversal of the roles of n and m .

Aldrich and McKelvey require that $\Psi^{\prime} \Psi=1$ and missing entries are not allowed in \mathbf{X}. The procedure outlined in Section 2 based on the model stated in equation (1) can be regarded as a generalization of the Aldrich-McKelvey scaling procedure to more than one dimension.

In this application the rows of the data set are the political stimuli and the columns are the respondents' perceptions of where on the seven-point scale the stimuli are. Consequently, there are n political stimuli (note the reversal of role of n from the equations above) and the basic space coordinates of the political stimuli are given in $\hat{\Psi}$. Recall that, by equation (1B), if \mathbf{X} has no missing entries and no error, then it has rank s. However, because $\mathrm{m}>\mathrm{n}$, subtracting off the column means reduces the rank of \mathbf{X} by one provided that the columns do not already sum to zero. In this case the number of basic dimension is s-1 so that $\hat{\Psi}$ is an n by s- 1 matrix, $\hat{\mathbf{W}}$ is m by s-1 and $\underline{\hat{\mathbf{c}}}$ is an m length vector where $\hat{\mathbf{W}}$ and $\underline{\hat{\mathbf{c}}}$ are the linear mappings for the m respondents.

Table 6* shows $\hat{\Psi}$ for two basic dimensions along with the corresponding one dimensional vector estimated by the Aldrich-McKelvey procedure. The first basic dimension is the liberal-conservative dimension and the order of the political stimuli - from Ted Kennedy at the far left to John Anderson near the center of the spectrum to Ronald Reagan at the far right - is intuitively appealing. The second basic dimension essentially separates John Anderson from everyone else. The standard errors were computed using a bootstrap
procedure identical to that described earlier except now the columns (respondents) are being sampled with replacement. The standard errors are based on 100 trials.

Table 6* About Here

These standard errors must be taken with a grain of salt, however, because, as Aldrich and McKelvey (1977) note, a respondent "...who sees things backwards ... contributes to a better fit to the 'true' space" (p. 116). That is, respondents who perceive a mirror image of the true configuration improve the fit of the model so that the standard errors in Table 6* underestimate the true standard errors. However, Monte Carlo work done by Aldrich and McKelvey and Palfrey and Poole (1987), show that the recovery of the stimulus configuration is robust to violations of the error assumptions and is very accurate even when the error level is very high and a large number of respondents are reporting mirror or semi-mirror images.

The fourth column of Table 6* shows the first basic dimension normalized so that it can be directly compared to the Aldrich-McKelvey configuration shown in the fifth column. The two configurations are, not surprisingly, virtually identical. The differences are due to the slightly different samples analyzed by the two procedures. Of the 888 respondents used to estimate the two basic dimensions, 643 had no missing data and were used in the Aldrich-McKelvey procedure.

5. Additional Empirical Examples

a. Recovering a Basic Space From the 1992 Issue Scales

Table 2 shows an analysis of fifteen issue scales from the 1992 NES survey. The survey included a panel as well as a cross section with some respondents included in both groups. The table is laid out the same as Table 4 in the $\boldsymbol{A J P S}$ article.

Table 2 About Here

The results are similar to those for the 1980 scales. The first dimension is clearly liberal/conservative and the second dimension appears to be picking up the abortion and women's equal role questions. However, in contrast to the 1980 results, the first dimension only accounts for about forty percent of the variance (r-square of .394 versus .512 for 1980) and the second dimension is not as strongly related to abortion and women's rights as it was in 1980. If conventional statistical tests were applied using the bootstrapped standard errors, then all the $\hat{\mathbf{w}}$'s for the first dimension, fourteen of the fifteen for the second, and eight of the fifteen for the third are statistically significant.

The data are clearly at most three-dimensional. Adding a fourth dimension improves the overall r-square to .674 but only one of the estimated $\hat{\mathbf{w}}$'s is statistically significant.

Because the set of scales is not the same between 1980 and 1992 it is not possible to make claims about changes in the structure and the fit of the basic space over time. That requires a panel and would be an interesting topic for future research. However, it certainly appears that the basic space is low dimensional. It appears that only two basic
dimensions - one capturing general liberalism/conservatism and one picking up issues related to the rights of women - give a good summary of mass attitudes.

References

Aldrich, John and Richard D. McKelvey. 1977. "A Method of Scaling with Applications to the 1968 and 1972 Presidential Elections." American Political Science Review, 71:111-130

Eckart, Carl and Gale Young. 1936. "The Approximation of One Matrix By Another of Lower Rank." Psychometrika, 1: 211-218.

Harman, Harry H. 1970. Modern Factor Analysis. Chicago: University of Chicago Press.
Palfrey, Thomas R. and Keith T. Poole. 1987. "The Relationship Between Information, Ideology, and Voting Behavior." American Journal of Political Science, 31:511-530.

Schonemann, Peter H. 1966. "A Generalized Solution of the Orthogonal Procrustes Problem." Psychometrika, 31:1-10.

Schonemann, Peter H. and R.M. Carroll. 1970. "Fitting One Matrix to Another Under Choice of a Central Dilation and Rigid Motion." Psychometrika, 35:245-256

Van de Geer, John P. 1971. Introduction to Multivariate Analysis for the Social Sciences. San Francisco: W.H. Freeman and Company.

Table 4*
Monte Carlo Tests of Eckart-Young Lower Rank Approximation
(Singular Values of $\Psi W^{\prime}: 50,35,20,5,5,5, \ldots .5$)

| \mathbf{N} | \mathbf{M} | $\begin{array}{c}\text { Rank of } \\ \text { Approximation }\end{array}$ | | $\begin{array}{c}\mathbf{R}^{2} \\ \text { With } \\ \text { E-Young }\end{array}$ | $\begin{array}{c}\mathbf{R}^{2} \\ \text { With } \\ \text { True } \Psi\end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |\(\left.] \begin{array}{c}Percent

Missing\end{array}\right]\)

Table 6*
1980 Liberal-Conservative Scale

Political Stimulus	First Basic Dimension	Second Basic Dimension	Normalized First Basic Dimension	Aldrich- McKelvey
Jimmy Carter	-2.234	-3.203	-0.229	-0.232
Ronald Reagan	(0.088)	(0.301)		
	5.685	-0.773	0.582	0.582
Ted Kennedy	(0.059)	(0.298)		
	-4.703	0.007	-0.482	-0.485
John Anderson	(0.091)	(0.539)		
	-0.757	6.756	-0.078	-0.066
Republican Party	(0.099)	(0.833)		
	5.089	-0.759	0.521	0.517
Democratic Party	(0.077)	(0.137)		
	-3.080	-2.029	-0.315	-0.317
	(0.095)	(0.277)		

Table 2A
Overall Fit Statistics for Fifteen 1992 Issue Scales

\mathbf{S}	\mathbf{N}	\% Missing	$\mathbf{R}^{\mathbf{2}}$	Standard Error of Estimate	Singular Values of $\hat{\psi} \hat{\mathbf{W}}^{\prime}$
1	1264	17.6	.394	1.392	113.526
2	1264	17.6	.519	1.300	86.803
3	1264	17.6	.604	1.242	76.235

Table 2B
Fit Statistics by Issue
(Bootstrapped Standard Errors in Parentheses)

Issue	\mathbf{n}_{j}	$\hat{\mathbf{c}}_{\text {j }}$	\hat{W}_{1}	$\hat{\mathrm{w}}_{2}$	$\hat{\mathrm{w}}_{3}$	r-square		
						1	2	3
Liberal/Conservative	924	4.19	-2.56	0.82	-0.79	. 301	. 327	. 372
		(0.04)	(0.16)	(0.42)	(0.89)			
Women's Equal Role	606	2.51	-3.25	4.32	-3.29	. 188	. 553	. 749
		(0.07)	(0.24)	(0.39)	(1.09)			
Defense Spending	1158	3.59	-2.48	1.54	3.09	. 202	. 385	. 529
		(0.05)	(0.16)	(0.32)	(0.75)			
Government Jobs	1143	4.17	-3.48	-4.09	-1.23	. 419	. 650	. 661
		(0.06)	(0.17)	(0.36)	(0.86)			
Govt Help Minorities	1191	4.51	-3.44	-2.38	0.78	. 420	. 457	. 489
		(0.06)	(0.19)	(0.45)	(1.15)			
Govt Provide Services	1122	4.36	1.98	2.18	3.22	. 179	. 319	. 478
		(0.05)	(0.16)	(0.43)	(1.08)			
Abortion	1239	2.87	0.97	-1.94	0.66	. 027	. 215	. 306
		(0.03)	(0.11)	(0.21)	(0.39)			
Liberal/Conservative	627	4.44	-2.83	1.45	-0.48	. 328	. 382	. 412
		(0.07)	(0.23)	(0.60)	(1.27)			
Defense Spending	846	4.01	-2.87	1.37	3.37	. 269	. 442	. 584
		(0.06)	(0.16)	(0.35)	(0.69)			
Govt Provide Services	1063	4.17	2.35	2.06	2.46	. 243	. 374	. 447
		(0.05)	(0.19)	(0.42)	(1.02)			
Defense Spending	1135	3.53	-2.29	1.28	2.90	. 204	. 371	. 529
		(0.04)	(0.13)	(0.21)	(0.53)			
Government Jobs	1141	4.29	-3.12	-3.02	-0.13	. 380	. 506	. 512
		(0.05)	(0.17)	(0.31)	(0.82)			
Abortion	1233	2.95	1.22	-1.91	0.76	. 061	. 247	. 348
		(0.03)	(0.11)	(0.20)	(0.36)			
Urban Unrest	972	3.35	-3.88	-0.91	3.22	. 383	. 398	. 526
		(0.07)	(0.24)	(0.81)	(2.30)			
Women's Equal Role	1225	2.32	-2.89	3.29	-2.30	. 160	. 399	. 631
		(0.05)	(0.17)	(0.42)	(0.88)			

Appendix A: BLACKBOX.FOR

1. Introduction

BLACKBOX.FOR is a FORTRAN program that implements the model discussed in "Recovering a Basic Space From a Set of Issue Scales." The program reads a "control card" file (BTSTR.DAT) and the data file (usually an NES dataset) and writes three output files: BLACK23.DAT, BLACK24.DAT, and BLACK28.DAT. BLACK23.DAT is a file that contains various information about the estimation, BLACK24.DAT is the output file for the respondent parameters (the p by s Ψ matrix for $\mathrm{k}=1,2, \ldots, \mathrm{~s}$), and BLACK28.DAT is the output file for the issue scale parameters (the n by $\mathrm{s} \mathbf{W}$ matrix and the vector of constants, c).

The program has been compiled for both the Pentium P5 processor as well as the Pentium P6 (Pentium II) processor. These executables are BLACK5.EXE and BLACK6.EXE respectively. They will run under both Windows 95 and Windows NT.

The example below is from the $\boldsymbol{A J P S}$ article and it uses the 14 issue scales from 1980 NES cross-sectional survey data set -- NES1980.DAT.

2. Input File: BTSTR.DAT

The first line of the input file (see next page) gives the name of the data set being analyzed. In this case, the 1980 NES data is in the subdirectory \NES. That is, the program, BLACK6.EXE is in the root directory. Note that if NES1980.DAT could be placed in the same directory as the program the first line would simply be NES1980.DAT.

The second line of the input file is the title of the scaling
The third line contains, in order, the number of basic dimensions to be estimated, the number of issue scales, the maximum number of missing data values for the issue scales, and the minimum number of responses for a respondent to be included in the analysis. Note that this is fixed format, namely, in FORTRAN syntax, 4I5. Hence, if you change any of the numbers be sure to not change the spacing. For example, if you want 2 basic dimensions and there are 10 stimuli, 11 missing data values, and a minimum number of 5 responses, this line would be:
$\begin{array}{llll}2 & 10 & 11 & 5\end{array}$
The fourth line is the format statement for the 1968 NES data file. The I4 is the respondent ID number and the I1's (there are 14 of them) are the respondents' self-reported positions on the 14 issue scales. The "X"s indicate spaces in FORTRAN format syntax. This format statement can be figured out by using the ICPSR codebook for the election study. If you have problems figuring out how to do this, just send me E-Mail at kp2a@andrew.cmu.edu.

The remaining 28 lines contain the title of each issue scale and the missing value codes for the scale. For the 7 -Point scales these are 0,8 , and 9 but for the two abortion scales the missing values are $0,7,8,9$. Note that these numbers are also fixed format.

```
BLACKB\NES\NES1980.DAT
DECOMPOSITION OF 14 1980 7-POINT SCALES
    3 14 4 8
(8X,I4,527X,I1,13X,I1,11X,I1,11X,I1,11X,I1,13X,I1,1217X,I1,36X,I1,17X,I1,
17X,I1,17X,I1,18X,I1,5X,I1,2X,I1)
LIBERAL/CONSERVATIVE
    0 8
DEFENSE
    0 8 9
GOVT SERVICES
    0 8
INFLATION
    0 8 9
ABORTION
    0 7 8 9
TAX CUTS
    0 8
LIBERAL/CONSERVATIVE
    0 8
GOVT HELP MINORITIES
    0 8
RUSSIA
    0 8 9
WOMENS EQUAL ROLE
    0 8
GOVT JOBS
    0 8 9
EQUAL RIGHTS AMEND
    0 8
BUSING
    0 8 9
ABORTION
    0
```


3. Output files for 1980 Issue Scale Example Shown in AJPS Article

a. BLACK23.DAT File

This file is the primary output file for the program. For ease of exposition I will annotate this file for the convenience of the reader. My comments will be preceded by \#\#\#\# signs.

The first part of the output file just echoes the lines in BTSTR.DAT. This is convenient because you can glance at this to make sure the starting file is configured and being read correctly.

```
\BLACKB\NES\NES1980.DAT
DECOMPOSITION OF 14 1980 7-POINT SCALEs
    3 14 4 8
(8X,I4,527X,I1,13X,I1,11X,I1,11X,I1,11X,I1,13X,I1,1217X,I1,36X,I1,17X,I1,17X,I1,17X,I1,18X,
I1,5X,I1,2X,I1)
LIBERAL/CO
\begin{tabular}{cccc}
0 & 8 & 9 & 0
\end{tabular}
GOVT SERVI 9
\begin{tabular}{cccc} 
INFLATION \\
0 & 8 & 9 & 0
\end{tabular}
\begin{tabular}{lllll} 
ABORTION \\
& 0 & 7 & 8 & 9 \\
TAX CUTS & & &
\end{tabular}
LIBERAL/CO 90
\begin{tabular}{cccc} 
GOVT HELP \\
0 & 8 & 9 & 0
\end{tabular}
RUSSIA
\begin{tabular}{crrr} 
MOMENS & EQU \\
0 & 8 & 9 & 0
\end{tabular}
\begin{tabular}{cccc} 
GOVT JOBS \\
0 & 8 & 9 & 0
\end{tabular}
\begin{tabular}{rrrrr} 
EQUAL & RIGH & & \\
0 & 8 & 9 & 0
\end{tabular}
\begin{tabular}{cllll} 
BORTION & & & \\
0 & 7 & 8 & 9
\end{tabular}
####
#### Here 1270 respondents have been included in the analysis. The
#### program requires that a respondent place himself/herself on at
#### least 8 (see input file) scales.
####
    NUMBER OF CASES 1270
****************************************************************************************
***************************************************************************************
    ********************************************************************************
#### The program first estimates a one dimensional model, then two
#### dimensions, etc.
    NUMBER OF DIMENSIONS= 1
```

\#\#\#\# This information is only given once.
\#\#\#\# The matix is 1270 by 14 and contains 17,780 entries. There
\#\#\#\# are 2509 missing entries or [2509/(14*1270)]*100 = 14.11\% missing
\#\#\#\# entries. The Sum of Squares is computed around the grand mean of
\#\#\#\# the matrix. Hence, it is the sum of the squared differences between
\#\#\#\# the 15,271 non-missing entries and the matrix mean.

\#\#\#\# The singular values for the one dimensional estimation are reported \#\#\#\# below. Only the first $\mathbf{s + 3}$ singular values are shown.

SINGULAR VALUES OF ESTIMATED MATRICES
FIRST COLUMN: ORIGINAL MATRIX WITH FILLED IN MISSING ENTRIES
SECOND COLUMN: REPRODUCED MATRIX -- PSI*W + JC
THIRD COLUMN: ORIGINAL MATRIX WITH FILLED IN MISSING ENTRIES MINUS THE ORIGINAL COLUMN
MEANS
FOURTH COLUMN: PSI*W
$\begin{array}{lllll}1 & 545.737 & 544.149 & 111.761 & 111.757\end{array}$
$\begin{array}{lllll}2 & 97.628 & 93.424 & 68.908 & 0.000\end{array}$

3	68.464	0.000	57.681	0.000

\#\#\#\# Below are the constraint checks discussed in the AJPS article --
\#\#\#\# namely, the sum of the columns of ψ must equal zero, and:
\#\#\#\# $\psi^{\prime} \psi=\mathbf{W}^{\prime} \mathbf{W}=\Lambda$ where Λ is the s by s diagonal matrix of the
\#\#\#\# singular values of $\psi \mathbf{W}$ ' which is the least squares estimate of
\#\#\#\# [$\mathbf{X}_{0} .-\mathbf{J}_{\mathrm{n}} \underline{\text { c }}$].
CONSTRAINT CHECKS ON PSI AND W
SUM OF COLUMNS OF PSI
0.0000

PSI-TRANSPOSE*PSI
1 111.7571
W-TRANSPOSE*W
1111.7571
\#\#\#\# Here $\psi \mathbf{W}^{\prime}+\mathbf{J}_{\mathbf{n}} \underline{\mathbf{c}}^{\mathbf{\prime}}$ is constructed and the r -square between the elements

\#\#\#\#
\#\#\#\# Below are the constraint checks discussed in the AJPS article --
\#\#\#\# namely, the sum of the columns of ψ must equal zero, and:
\#\#\#\# $\psi^{\prime} \psi=\mathbf{W}^{\prime} \mathbf{W}=\Lambda$ where Λ is the s by s diagonal matrix of the \#\#\#\# singular values of $\psi \mathbf{W}$ ' which is the least squares estimate of \#\#\#\# [$\mathbf{x}_{0} .-\mathbf{J}_{\mathrm{n}} \underline{\left.\mathbf{C}^{\prime}\right] . ~ N o w ~ t w o ~ b y ~ t w o ~ m a t r i c e s ~ a r e ~ b e i n g ~ p r i n t e d ~ o u t . ~}$ \#\#\#\#

```
    CONSTRAINT CHECKS ON PSI AND W
        SUM OF COLUMNS OF PSI
            0.0000 0.0000
            PSI-TRANSPOSE*PSI
            1 110.9815 0.0000
            0.0000 77.5591
            W-TRANSPOSE*W
            1
    R-SQUARE 15271 0.611
    RANK CHECK OF PSI*W 2
        110.9815
            77.5591
                0.0000
                0.0000
                0.0000
                0.0000
####
#### Three dimensions -- the maximum set in the input file -- are
#### now estimated.
####
    ********************************************************************************
    NUMBER OF DIMENSIONS= 3
    DIMENSION = 1 TOTAL SSE REG1= 26094.3320
    DIMENSION= 1 TOTAL SSE REG2= 25818.1855
    DIMENSION= 1 TOTAL SSE REG1= 25742.5508
    DIMENSION= 1 TOTAL SSE REG2= 25718.7637
    DIMENSION= 1 TOTAL SSE REG1= 25710.2461
    DIMENSION= 1 TOTAL SSE REG2= 25706.7617
    DIMENSION= 1 TOTAL SSE REG1= 25705.1016
    DIMENSION= 1 TOTAL SSE REG2= 25704.3594
    DIMENSION = 2 TOTAL SSE REG1= 21380.9219
    DIMENSION= 2 TOTAL SSE REG2= 21119.8066
    DIMENSION= 2 TOTAL SSE REG1= 20949.8340
    DIMENSION= 2 TOTAL SSE REG2= 20838.7109
    DIMENSION= 2 TOTAL SSE REG1= 20766.0664
    DIMENSION= 2 TOTAL SSE REG2= 20717.7871
    DIMENSION= 2 TOTAL SSE REG1= 20685.3633
    DIMENSION= 2 TOTAL SSE REG2= 20663.1270
    DIMENSION= 3 TOTAL SSE REG1= 17706.8184
    DIMENSION= 3 TOTAL SSE REG2= 17619.4512
    DIMENSION= 3 TOTAL SSE REG1= 17548.3496
    DIMENSION= 3 TOTAL SSE REG2= 17489.4707
    DIMENSION= 3 TOTAL SSE REG1= 17440.7461
    DIMENSION= 3 TOTAL SSE REG2= 17400.1348
    DIMENSION= 3 TOTAL SSE REG1= 17365.9629
    DIMENSION= 3 TOTAL SSE REG2= 17336.9277
    DIMENSION = 3 TOTAL SSE REG1= 17296.1191
    DIMENSION= 3 TOTAL SSE REG2= 17058.3926
    DIMENSION= 3 TOTAL SSE REG1= 17023.2207
    DIMENSION= 3 TOTAL SSE REG2= 16995.1074
    DIMENSION= 3 TOTAL SSE REG1= 16971.8438
    DIMENSION= 3 TOTAL SSE REG2= 16952.2773
    DIMENSION= 3 TOTAL SSE REG1= 16935.7246
    DIMENSION= 3 TOTAL SSE REG2= 16921.6406
    DIMENSION= 3 TOTAL SSE REG1= 16909.6445
    DIMENSION= 3 TOTAL SSE REG2= 16899.3594
    SINGULAR VALUES OF ESTIMATED MATRICES
    FIRST COLUMN: ORIGINAL MATRIX WITH FILLED IN MISSING ENTRIES
    SECOND COLUMN: REPRODUCED MATRIX -- PSI*W + Jc
    THIRD COLUMN: ORIGINAL MATRIX WITH FILLED IN MISSING ENTRIES MINUS THE ORIGINAL COLUMN
MEANS
```


b. BLACK24.DAT

Below is the output of the respondent parameters -- Ψ-- for one, two, and three dimensions. The first integer is a simple counter and runs, in this instance, from 1 to 1270 -the number of respondents in the analysis. The second number is the actual case number in the NES 1980.DAT file.

```
            1 -0.281
            2 0.595
            30.517
            5-0.111
            70.398
            8 0.368
            9-0.364
            10-0.095
            11 0.090
            120.148
etc.
etc.
                                1756-0.264
                1757 0.024
                1758-0.158
                1759-0.419
                1760-0.324
                1761 -0.011
                1762 -0.332
                1763 0.296
                1764-0.123
                1765-0.033
            1 -0.282 -0.390
            2 0.607 -0.255
            3 0.675 -0.375
            5-0.099 0.170
            70.390 0.023
            8 0.383-0.120
            9-0.378 0.267
            10-0.108 0.253
            11 0.072 -0.703
            12 0.145 -0.004
etc.
etc.
        1756-0.267 0.050
        1757 0.023-0.013
        1758-0.162 0.327
        1759-0.456 0.385
        1760-0.338 0.419
        1761 -0.018 0.111
        1762-0.297-0.142
        1763 0.296 -0.264
        1764-0.129 0.320
        1765-0.054 0.189
            1 -0.281 0.392 0.024
            2 0.600 0.213 0.197
            3 0.602 -0.053 0.787
            5-0.126 -0.200 0.208
            7 0.416 -0.002 -0.275
```

```
        6 8 0.368 0.128 -0.097
            9-0.380-0.259-0.060
        10-0.116 -0.215 -0.204
        11 0.075 0.701 0.350
        12 0.170 -0.031 0.113
    etc.
    etc.
1261 1756 -0.275 -0.093 0.206
1262 1757 -0.005 -0.028 0.170
1263 1758 -0.166 -0.345 0.055
1264 1759 -0.449 -0.334 -0.234
1265 1760-0.337-0.363-0.291
1266 1761 -0.017-0.083-0.151
1267 1762 -0.160 0.353-0.302
1268}17630.285 0.215 0.260
1269 1764 -0.135-0.328-0.005
1270 1765 -0.046-0.161-0.292
```


c. BLACK28.DAT

Below is the output for the issue scale parameters -- the \mathbf{W} matrix and the vector \mathbf{c}-- for one, two, and three dimensions. After the name of the issue, the first number is the number of respondents placing themselves on the issue, the next number is the constant, \mathbf{c}, and the last number is r -square. The numbers between $\mathbf{\mathbf { c }}$ and the r -square are the elements of \mathbf{W}. Note that this is the source for the parameter estimates shown in Table 4B in the AJPS article. The slight differences between these numbers and those in the article are due to some marginal improvements made in the program code. The slight differences in the $2^{\text {nd }}$ and $3{ }^{\text {rd }}$ dimensions are due to a slight rotation. The r -squares are unchanged except for a few rounding differences.

LIBERAL/CO	875	4.280	-3.028	0.414		
DEFENSE	1163	5.210	-1.753	0.123		
GOVT SERVI	1119	4.323	4.306	0.451		
INFLATION	816	4.106	2.018	0.159		
ABORTION	1238	2.856	0.624	0.030		
TAX CUTS	836	2.839	-1.074	0.055		
LIBERAL/CO	949	4.369	-2.755	0.414		
GOVT HELP	1160	4.542	-3.400	0.412		
RUSSIA	1152	3.891	-3.034	0.231		
WOMENS EQU	1223	2.845	-2.859	0.204		
GOVT JOBS	1131	4.377	-4.491	0.518		
EQUAL RIGH	1144	2.663	-3.295	0.381		
BUSING	1219	6.051	-2.699	0.256		
ABORTION	1246	2.675	0.722	0.047		
LIBERAL/CO	875	4.300	-2.966	-0.954	0.424	
DEFENSE	1163	5.214	-1.779	-0.899	0.147	
GOVT SERVI	1119	4.368	4.331	-3.042	0.617	
INFLATION	816	4.152	2.088	-2.940	0.393	
ABORTION	1238	2.856	0.512	2.211	0.290	
TAX CUTS	836	2.818	-1.103	0.667	0.071	
LIBERAL/CO	949	4.377	-2.758	-0.459	0.423	
GOVT HELP	1160	4.535	-3.456	0.119	0.424	
RUSSIA	1152	3.887	-3.140	-0.241	0.247	
WOMENS EQU	1223	2.872	-2.466	-6.007	0.771	
GOVT JOBS	1131	4.350	-4.595	2.417	0.635	
EQUAL RIGH	1144	2.673	-3.148	-2.438	0.491	
BUSING	1219	6.049	-2.741	-0.059	0.263	
ABORTION	1246	2.676	0.629	2.112	0.318	
LIBERAL/CO	875	4.294	-2.976	0.708	1.180	0.448
DEFENSE	1163	5.200	-1.806	1.586	-2.562	0.315
GOVT SERVI	1119	4.410	4.295	3.707	-2.929	0.778
INFLATION	816	4.169	1.998	3.286	-1.111	0.451
ABORTION	1238	2.856	0.497	-2.004	-1.174	0.312
TAX CUTS	836	2.813	-1.049	-0.902	0.891	0.091
LIBERAL/CO	949	4.367	-2.785	0.265	0.557	0.437
GOVT HELP	1160	4.534	-3.457	0.140	-0.961	0.440
RUSSIA	1152	3.831	-3.255	1.558	-5.590	0.695
WOMENS EQU	1223	2.891	-2.372	5.602	2.868	0.805
GOVT JOBS	1131	4.341	-4.632	-2.176	-1.392	0.648
EQUAL RIGH	1144	2.680	-3.159	1.860	2.372	0.563
BUSING	1219	6.042	-2.819	0.329	-1.282	0.306
ABORTION	1246	2.675	0.587	-1.980	-0.906	0.329

Appendix B: BMC2.FOR (Bootstrap Program for BLACKBOX.FOR)

1. Introduction

BMC2.FOR is a FORTRAN program that is identical to BLACKBOX.FOR only it performs a bootstrap analysis to estimate the standard errors of the elements of \mathbf{W} and \mathbf{c}. The program samples respondents with replacement and re-runs the estimation for each constructed matrix. For example, below 100 bootstrap process is repeated 100 times and the standard errors for \mathbf{W} and $\underline{\mathbf{c}}$ are obtained by computing the sum of squared differences between the actual \mathbf{W} and $\underline{\mathbf{c}}$ and the $100 \mathbf{W} / \underline{\mathbf{c}}$'s from the bootstrap analysis. Because \mathbf{W} is only defined up to an arbitrary rotation, this was removed before the standard error computation. That is, each \mathbf{W} from the bootstrap was rotated to best fit the actual \mathbf{W} before the squared difference was computed.

2. Input File for BMC2.FOR: BMCSTR.DAT

This file is identical to the start file for BLACKBOX.FOR -- BTSTR.DAT -- shown above in Appendix A. The only difference is in the third line where the $5^{\text {th }}$ number is the number of bootstrap iterations.

```
\BLACKB\NES\NES1980.DAT
    DECOMPOSITION OF 14 1980 7-POINT SCALES
        3 14 4 8 100
(8X,I4,527X,I1,13X,I1,11X,I1,11X,I1,11X,I1,13X,I1,1217X,I1,36X,I1,17X,I1,
17X,I1,17X,I1,18X,I1,5X,I1,2X,I1)
LIBERAL/CONSERVATIVE
    0 8 9
DEFENSE
    0 8
GOVT SERVICES
    0 8 9
INFLATION
    0 8
ABORTION
    0 7 8 9
TAX CUTS
    0 8
LIBERAL/CONSERVATIVE
    0 8 9
GOVT HELP MINORITIES
    0 8 9
RUSSIA
    0 8
WOMENS EQUAL ROLE
GOVT [ JOBS 8 % 8 8 8
EQUAL RIGHTS AMEND
    0 8 9
BUSING
    0 8
ABORTION
    0 7 8 8
```


3. Output files for Bootstrap Program

a. BMC223.DAT File

This output file is the same as BLACK23.DAT except that it will contain the output for 300 runs of the program -- 100 one dimensional outputs, 100 two dimensional outputs, and 100 three dimensional outputs. Consequently this file will be rather large and is only useful for debugging purposes if there is some oddity in the data set.

```
Iseed= 93600
    \BLACKB\NES\NES1980.DAT
DECOMPOSITION OF 14 1980 7-POINT SCALES
        3 14 4 8 101
(8X,I4,527X,I1,13X,I1,11X,I1,11X,I1,11X,I1,13X,I1,1217X,I1,36X,I1,17X,I1,17X,I1,17X,I1,18X,
I1,5X,I1, 2X,I1)
LIBERAL/CO
\begin{tabular}{llll}
0 & 8 & 9 & 0
\end{tabular}
DEFENSE
        SERVI
\begin{tabular}{llll}
0 & 8 & 9 & 0
\end{tabular}
\begin{tabular}{cccc} 
INFLATION \\
0 & 8 & 9 & 0
\end{tabular}
\begin{tabular}{cllll} 
ABORTION \\
0 & 7 & 8 & 9
\end{tabular}
TAX CUTS
\begin{tabular}{crll}
0 & 8 & 9 & 0 \\
IBERAL/CO & & \\
0 & 8 & 9 & 0
\end{tabular}
\begin{tabular}{cccc} 
GOVT HELP \\
0 & 8 & 9 & 0
\end{tabular}
\begin{tabular}{cccc} 
RUSSIA \\
0 & 8 & 9 & 0
\end{tabular}
\begin{tabular}{crlll} 
WOMENS & EQU \\
0 & 8 & 9 & 0
\end{tabular}
GOVT JOBS 80
\begin{tabular}{rrrrr} 
EQUAL & RIGH & & \\
0 & 8 & 9 & 0
\end{tabular}
BUSING
\begin{tabular}{cccc}
0 & 8 & 9 & 0 \\
\begin{tabular}{c} 
BORTION \\
0
\end{tabular} & 7 & 8 & 9
\end{tabular}
    NUMBER OF CASES 1270
    ***********************************************************************************
    *************************************************************************************
    **************************************************************************************
    NUMBER OF DIMENSIONS = 1
    NUMBER OF ROWS =}127
    NUMBER OF COLUMNS = 14
    TOTAL NUMBER OF DATA ENTRIES = 15271
    NUMBER MISSING ENTRIES = 2509
    PERCENT MISSING DATA = 14.11136
    SUM OF SQUARES GRAND MEAN = 52705.13281
```


Etc., Etc., Etc.

DIMENSION = 1 TOTAL SSE REG1= 25390.1230
DIMENSION $=1$ TOTAL SSE REG2 $=25098.9512$
DIMENSION $=1$ TOTAL SSE REG1= 25014.0723
DIMENSION $=1$ TOTAL SSE REG2= 24985.0508

DIMENSION $=1$ TOTAL SSE REG1= 24973.4492 DIMENSION= 1 TOTAL SSE REG2= 24968.3242
DIMENSION $=1$ TOTAL SSE REG1 $=24965.9434$
DIMENSION $=1$ TOTAL SSE REG2 $=24964.7285$
DIMENSION $=2$ TOTAL SSE REG1= 20486.9941
DIMENSION $=2$ TOTAL SSE REG2 $=\quad 20256.3594$

b. BMC228.DAT File

This output file is the same as BLACK28.DAT except that it will contain the output for 300 runs of the program -- 100 one dimensional outputs, 100 two dimensional outputs, and 100 three dimensional outputs.

LIBERAL/CO	875	4.280	-3.028	0.414
DEFENSE	1163	5.210	-1.753	0.123
GOVT SERVI	1119	4.323	4.306	0.451
INFLATION	816	4.106	2.018	0.159
ABORTION	1238	2.856	0.624	0.030
TAX CUTS	836	2.839	-1.074	0.055
LIBERAL/CO	949	4.369	-2.755	0.414
GOVT HELP	1160	4.542	-3.400	0.412
RUSSIA	1152	3.891	-3.034	0.231
WOMENS EQU	1223	2.845	-2.859	0.204
GOVT JOBS	1131	4.377	-4.491	0.518
EQUAL RIGH	1144	2.663	-3.295	0.381
BUSING	1219	6.051	-2.699	0.256
ABORTION	1246	2.675	0.722	0.047

Etc.

Etc.

LIBERAL/CO	875	4.300	-2.966	-0.954	0.424
DEFENSE	1163	5.214	-1.779	-0.899	0.147
GOVT SERVI	1119	4.368	4.331	-3.042	0.617
INFLATION	816	4.152	2.088	-2.940	0.393
ABORTION	1238	2.856	0.512	2.211	0.290
TAX CUTS	836	2.818	-1.103	0.667	0.071
LIBERAL/CO	949	4.377	-2.758	-0.459	0.423
GOVT HELP	1160	4.535	-3.456	0.119	0.424
RUSSIA	1152	3.887	-3.140	-0.241	0.247
WOMENS EQU	1223	2.872	-2.466	-6.007	0.771
GOVT JOBS	1131	4.350	-4.595	2.417	0.635
EQUAL RIGH	1144	2.673	-3.148	-2.438	0.491
BUSING	1219	6.049	-2.741	-0.059	0.263
ABORTION	1246	2.676	0.629	2.112	0.318

Etc.

Etc.

LIBERAL/CO	875	4.294	-2.976	0.708	1.180	0.448
DEFENSE	1163	5.200	-1.806	1.586	-2.562	0.315
GOVT SERVI	1119	4.410	4.295	3.707	-2.929	0.778
INFLATION	816	4.169	1.998	3.286	-1.111	0.451
ABORTION	1238	2.856	0.497	-2.004	-1.174	0.312
TAX CUTS	836	2.813	-1.049	-0.902	0.891	0.091
LIBERAL/CO	949	4.367	-2.785	0.265	0.557	0.437
GOVT HELP	1160	4.534	-3.457	0.140	-0.961	0.440
RUSSIA	1152	3.831	-3.255	1.558	-5.590	0.695
WOMENS EQU	1223	2.891	-2.372	5.602	2.868	0.805
GOVT JOBS	1131	4.341	-4.632	-2.176	-1.392	0.648
EQUAL RIGH	1144	2.680	-3.159	1.860	2.372	0.563
BUSING	1219	6.042	-2.819	0.329	-1.282	0.306
ABORTION	1246	2.675	0.587	-1.980	-0.906	0.329

b. BMC229.DAT File

This is the important file. This file reports the original W's and $\underline{\mathbf{c}}$'s for one, two, and three dimensions (note that these will be identical to BLACK28.DAT above), the bootstrap standard errors, and the corresponding t -values for the null hypotheses that the parameters are all equal to zero. The r-squares are not shown. As I noted above, the slight differences between these values and those shown in the AJPS article for the $2^{\text {nd }}$ and $3^{\text {rd }}$ dimensions are due to a slight rotational difference due to some efficiencies introduced into the program code.

For one dimension, the first number is \mathbf{c}, the second is \mathbf{w}, the third and fourth are the standard errors, and the fifth and sixth are the t-values. The output for two and three dimensions is in the same order.

1	4.280	-3.028	0.050	0.143	85.378	-21.137		
2	5.210	-1.753	0.044	0.207	119.542	-8.458		
3	4.323	4.306	0.057	0.191	76.194	22.539		
4	4.106	2.018	0.055	0.223	74.261	9.061		
5	2.856	0.624	0.028	0.134	101.583	4.667		
6	2.839	-1.074	0.047	0.189	60.889	-5.674		
7	4.369	-2.755	0.034	0.138	129.931	-19.985		
8	4.542	-3.400	0.045	0.151	100.279	-22.482		
9	3.891	-3.034	0.054	0.218	72.384	-13.888		
10	2.845	-2.859	0.050	0.271	57.178	-10.558		
11	4.377	-4.491	0.055	0.130	79.867	-34.511		
12	2.663	-3.295	0.043	0.124	61.819	-26.644		
13	6.051	-2.699	0.043	0.222	139.673	-12.131		
14	2.675	0.722	0.024	0.124	110.989	5.807		
1	4.300	-2.966	-0.954	0.050	0.161	0.264	85.190	-18.441
	-3.609							
2	5.214	-1.779	-0.899	0.045	0.213	0.477	116.915	-8.355
	-1.886							
3	4.368	4.331	-3.042	0.052	0.168	0.458	84.058	25.740
	-6.640							
4	4.152	2.088	-2.940	0.052	0.201	0.312	79.912	10.364
	-9.428							
5	2.856	0.512	2.211	0.032	0.124	0.152	90.355	4.127
	14.512							
6	2.818	-1.103	0.667	0.054	0.198	0.393	52.389	-5.579
	1.698							
7	4.377	-2.758	-0.459	0.042	0.144	0.226	104.907	-19.149
	-2.032							
8	4.535	-3.456	0.119	0.049	0.147	0.307	93.011	-23.427
	0.388							
9	3.887	-3.140	-0.241	0.053	0.320	0.915	72.717	-9.802
	-0.263							
10	2.872	-2.466	-6.007	0.049	0.143	0.243	58.883	-17.215
	-24.716							
11	4.350	-4.595	2.417	0.054	0.125	0.303	80.519	-36.869
	7.979							
12	2.673	-3.148	-2.438	0.045	0.141	0.352	58.948	-22.276
	-6.935							
13	6.049	-2.741	-0.059	0.045	0.230	0.380	135.150	-11.931
	-0.156							
14	2.676	0.629	2.112	0.029	0.106	0.130	91.571	5.951
	16.201							
1	4.294	-2.976	0.708	1.180	0.046	0.178	0.509	0.844
	92.487	-16.709	1.391	1.399				
2	5.200	-1.806	1.586	-2.562	0.049	0.441	1.520	2.899
	106.219	-4.099	1.043	-0.884				
3	4.410	4.295	3.707	-2.929	0.064	0.220	1.092	2.305
	68.705	19.511	3.396	-1.270				
4	4.169	1.998	3.286	-1.111	0.052	0.253	0.879	1.495

	80.561	7.900	3.737	-0.743					
5	2.856	0.497	-2.004	-1.174	0.028	0.136	0.388	0.633	
	101.767	3.642	-5.162	-1.854					
6	2.813	-1.049	-0.902	0.891	0.049	0.316	0.776	1.057	
	56.947	-3.321	-1.162	0.842					
7	4.367	-2.785	0.265	0.557	0.043	0.162	0.286	0.611	
	102.567	-17.144	0.925	0.912					
8	4.534	-3.457	0.140	-0.961	0.053	0.219	0.867	1.506	
	85.959	-15.770	0.161	-0.638					
9	3.831	-3.255	1.558	-5.590	0.098	0.398	0.995	4.111	
	38.911	-8.175	1.566	-1.360					
10	2.891	-2.372	5.602	2.868	0.054	0.170	0.541	1.335	
	53.952	-13.988	10.348	2.149					
11	4.341	-4.632	-2.176	-1.392	0.053	0.230	0.824	1.201	
	81.543	-20.106	-2.641	-1.159					
12	2.680	-3.159	1.860	2.372	0.051	0.145	0.455	1.026	
	52.695	-21.720	4.085	2.312					
13	6.042	-2.819	0.329	-1.282	0.046	0.355	1.333	2.688	
	132.768	-7.949	0.247	-0.477					
14	2.675	0.587	-1.980	-0.906	0.028	0.128	0.298	0.474	
	94.502	4.582	-6.638	-1.913					

Appendix C: BLACKT.FOR

1. Introduction

BLACKT.FOR is a FORTRAN program that can be used to do an AldrichMcKelvey scaling in more than one dimension. The program reads a "control card" file (BTSTRT.DAT) and the data file (usually an NES data set) and writes three output files: BLACKT23.DAT, BLACKT24.DAT, and BLACKT28.DAT. The program has been compiled for both the Pentium P5 processor as well as the Pentium P6 (Pentium II) processor. These executables are BLACKT5.EXE and BLACKT6.EXE respectively. They will run under both Windows 95 and Windows NT.

The example below uses the liberal-conservative 7-point scale from the 1980 NES cross-sectional survey data set -- NES 1980.DAT.

2. Input File for the Transpose Program: BTSTRT.DAT

The first line of the input file (see next page) gives the name of the data set being analyzed. In this case, the 1980 NES data is in the subdirectory \NES. That is, the program, BLACKT6.EXE is in the root directory. Note that if NES1980.DAT could be placed in the same directory as the program the first line would simply be NES1980.DAT.

The second line of the input file is the title of the scaling
The third line contains, in order, the number of basic dimensions, the number of stimuli being placed on the 7-point scale, and the number of missing data values. Note that this is fixed format, namely, in FORTRAN syntax, 3I5. Hence, when you analyze a different scale be sure to not change the spacing. For example, if you want 3 basic dimensions and there are 10 stimuli and 3 missing data values, this line would be:

$$
\begin{array}{lll}
3 & 10 & 3
\end{array}
$$

The fourth line contains the values of the missing data. In this case 0,8 , and 9 . Note that these numbers are also fixed format.

The fifth line is the format statement for the data file. The 4 I 1 and the 2 I 1 are the six stimuli and the I4 is the respondent ID number. This format statement can be figured out by using the ICPSR codebook for the election study. If you have problems figuring out how to do this, just send me E-Mail at kp2a@andrew.cmu.edu.

Finally, the last group of lines are the names of the stimuli. In this case, the four names of the important presidential candidates in 1980 along with the two political parties.

Note that this starting file differs from those for BLACKBOX.FOR and BMC2.FOR in that this program only analyzes a single issue scale. Hence, there is no need to repeat the missing data entries.

```
\NES\NES1980.DAT
    DECOMPOSITION OF 1980 LIBERAL-CONSERVATIVE 7-POINT SCALE
        2 6 3
        0 8 9
(8X,I4,1810X,4I1,11X,2I1)
    CARTER
    REAGAN
KENNEDY
ANDERSON
REPUB
DEMO
```


3. Output files for Transpose $\mathbf{X}_{\mathbf{0}}$ Example

a. BLACKT23.DAT File

This file is the primary output file for the transpose program. For ease of exposition I will annotate this file for the convenience of the reader. My comments will be preceded by \#\#\#\# signs.

The first part of the output file just echoes the lines in BTSTRT.DAT. This is convenient because you can glance at this to make sure the starting file is configured correctly.

```
\BLACKB\NES\NES1980.DAT
    DECOMPOSITION OF 1980 LIBERAL-CONSERVATIVE 7-POINT SCALE
            2 6 3
            0 8 9
(8X,I4,1810X,4I1,11X,2I1)
    CARTER
    REAGAN
    KENNEDY
    ANDERSON
    REPUB
    DEMO
#### Here 888 respondents have been included in the analysis. The
#### program requires that a respondent place at least s+2 (where s is
#### the number of basic dimensions being estimated) stimuli on the
#### scale.
    NUMBER OF CASES 888
    **************************************************************************
    ***************************************************************************
    *****************************************************************************
#### The program first estimates a one dimensional model, then two
#### dimensions, etc.
    NUMBER OF DIMENSIONS= 1
#### This information is only given once.
#### The matix is 6 by 888 and contains 4973 entries. Hence, there
#### are 355 missing entries or [355/(6*888)]*100 = 6.66291% missing
#### entries. The Sum of Squares is computed around the grand mean of
#### the matrix. Hence, it is the sum of the squared differences between
#### the 4973 non-missing entries and the matrix mean.
\begin{tabular}{|c|c|}
\hline NUMBER OF ROWS & 6 \\
\hline NUMBER OF COLUMNS & 888 \\
\hline TOTAL NUMBER OF DATA ENTRIES & 4973 \\
\hline NUMBER MISSING ENTRIES & 355 \\
\hline PERCENT MISSING DATA & 6.66291 \\
\hline SUM OF SQUARES & 13967.70215 \\
\hline
\end{tabular}
```

\#\#\#\# This is the iteration record for the first basic dimension. \#\#\#\# REG1 estimates W and c and REG2 estimates ψ.

```
DIMENSION= 1 TOTAL SSE REG1= 3438.4109
DIMENSION= 1 TOTAL SSE REG2= 3435.7090
DIMENSION= 1 TOTAL SSE REG1= 3435.3950
DIMENSION=1 TOTAL SSE REG2= 3435.3579
DIMENSION=1 TOTAL SSE REG1= 3435.3455
DIMENSION=1 TOTAL SSE REG2= 3435.3394
DIMENSION=1 TOTAL SSE REG1= 3435.3452
DIMENSION= 1 TOTAL SSE REG2= 3435.3481
DIMENSION= 1 TOTAL SSE REG1= 3435.3479
DIMENSION= 1 TOTAL SSE REG2= 3435.3486
#### The singular values for the one dimensional estimation are reported
#### below. Only the first s+3 singular values are shown.
    SINGULAR VALUES OF ESTIMATED MATRICES
    FIRST COLUMN: ORIGINAL MATRIX WITH FILLED IN MISSING ENTRIES
    SECOND COLUMN: REPRODUCED MATRIX -- PSI*W + Jc
    THIRD COLUMN: PSI*W
        1 301.190 301.097 95.444
    2 65.736 64.998 0.000
    3 36.408 0.000 0.000
    4 31.730 0.000 0.000
```

\#\#\#\# Below are the constraint checks discussed in the AJPS article --
\#\#\#\# namely, the sum of the columns of ψ must equal zero, and:
\#\#\#\# $\psi^{\prime} \psi=\mathbf{W}^{\prime} \mathbf{W}=\Lambda$ where Λ is the s by s diagonal matrix of the
\#\#\#\# singular values of $\psi \mathbf{W}$ ' which is the least squares estimate of
\#\#\#\# [$\left.\mathbf{X}_{0} .-\mathbf{J}_{\mathrm{p}} \underline{\prime}{ }^{\prime}\right]$.

```
CONSTRAINT CHECKS ON PSI AND W
    SUM OF COLUMNS OF PSI
            0.0000
    PSI-TRANSPOSE*PSI
    1 95.4437
    W-TRANSPOSE*W
    195.4438
```

\#\#\#\# Here $\psi \mathbf{W}^{\prime}+\boldsymbol{J}_{\mathbf{p}} \underline{C}^{\prime}$ is constructed and the r-square between the elements \#\#\#\# of $\psi \mathbf{W}^{\prime}+\boldsymbol{J}_{\mathbf{p}} \underline{C}^{\prime}$ and the original data matrix, of \mathbf{X}_{0} is computed as a \#\#\#\# check on the estimation. \#\#\#\#

R-SQUARE CHECK 49730.754
\#\#\#\# Similar to the above, as a check, a singular value decomposition
 \#\#\#\# matrix is reported (here it is one) along with the singular values.

RANK CHECK OF PSI*W 1
95.4437
20.0000
30.0000
$4 \quad 0.0000$
50.0000

$$
6 \quad 0.0000
$$

NUMBER OF DIMENSIONS = 2

\#\#\#\# This is the iteration record for two basic dimensions. The first \#\#\#\# basic dimension is extracted first followed by the second basic \#\#\#\# dimension.

\#\#\#\# The singular values of the estimated matrices are printed out \#\#\#\# below. Note that if there were no missing data, the first s+1 \#\#\#\# singular values in the first two columns would be identical.

SINGULAR VALUES OF ESTIMATED MATRICES
FIRST COLUMN: ORIGINAL MATRIX WITH FILLED IN MISSING ENTRIES SECOND COLUMN: REPRODUCED MATRIX -- PSI*W + Jc
THIRD COLUMN: PSI*W

1	301.159	301.131	95.383
2	65.403	65.256	61.191
3	60.451	60.393	0.000
4	30.425	0.000	0.000
5	24.299	0.000	0.000

CONSTRAINT CHECKS ON PSI AND W
SUM OF COLUMNS OF PSI
$0.0000 \quad 0.0000$
PSI-TRANSPOSE*PSI
$1 \quad 95.3833 \quad 0.0000$
$2 \quad 0.0000 \quad 61.1914$
W-TRANSPOSE*W
$1 \quad 95.3833 \quad 0.0000$
$2 \quad 0.0000 \quad 61.1914$

R-SQUARE CHECK 49730.865
RANK CHECK OF PSI*W 2
195.3833
$2 \quad 61.1914$
30.0000
$4 \quad 0.0000$
$5 \quad 0.0000$
$6 \quad 0.0000$
***)
ITERATION RECORD

DIM	ERROR	EXPLAINED	PERCENT	CUM PERCENT	R-SQUARE
1	3435.3513	10532.3506	75.4050	75.4050	0.7541
2	1892.3855	12075.3164	11.0467	86.4517	0.8645

$* *$

b. BLACKT24.DAT

Rather than writing out Ψ, for purposes of comparison with the Aldrich-McKelvely procedure, the singular vectors are written out instead. Namely, $\Psi=\mathbf{U} \Lambda^{1 / 2}$, where \mathbf{U} is p by s matrix such that $\mathbf{U}^{\prime} \mathbf{U}=\mathbf{I}_{\mathbf{s}}$, and Λ is the s by s diagonal matrix of singular values of $\Psi \mathbf{W}^{\prime}$. Here, just \mathbf{U} is written out for one and two dimensions.

CARTER	0.242	
REAGAN	-0.580	
KENNEDY	0.478	
ANDERSON	0.059	
REPUB	-0.519	
DEMO	0.321	
CARTER	0.229	0.409
REAGAN	-0.582	0.099
KENNEDY	0.482	-0.001
ANDERSON	0.077	-0.864
REPUB	-0.521	0.097
DEMO	0.315	0.259

c. BLACKT28.DAT

This file contains the respondent linear transformation parameters -- \mathbf{W} and \mathbf{c}. The first number is the respondent's identification number from the NES1980.DAT file. The second number is the number of responses, the third number is \mathbf{c}, and the last number is the r square. Between \mathbf{c} and the r-square are the \mathbf{W} values.

1	6	4.333-0.317	0.351	
8	6	$5.167-0.207$	0.463	
9	6	3.833-0.371	0.884	
10	6	4.167-0.059	0.048	
11	6	$5.167 \quad 0.121$	0.084	
13	6	5.000-0.321	0.613	
14	6	$4.167-0.375$	0.903	
16	6	4.333-0.407	0.679	
17	4	3.6510 .204	0.364	
19	6	4.333-0.310	0.686	
20	6	$3.333-0.407$	0.913	
		etc etc		
1756	6	$3.667-0.573$	0.888	
1757	6	3.500-0.115	0.134	
1758	6	$3.500-0.442$	0.866	
1759	6	3.500-0.533	0.722	
1760	5	$3.363-0.322$	0.879	
1761	6	4.333-0.104	0.140	
1762	5	$2.586-0.229$	0.283	
1764	6	3.833-0.387	0.962	
1765	5	$4.020 \quad 0.169$	0.340	
1	6	4.333-0.311	-0.364	0.636
8	6	$5.167-0.202$	-0.281	0.989
9	6	3.833-0.371	0.041	0.893
10	6	$4.167-0.064$	0.229	0.521
11	6	$5.167 \quad 0.119$	0.093	0.111
13	6	5.000-0.323	0.059	0.635
14	6	$4.167-0.372$	-0.145	0.979
16	6	4.333-0.410	0.209	0.805
17	4	3.8450 .202	0.283	0.985
19	6	4.333-0.306	-0.180	0.817
20	6	3.333-0.408	0.011	0.914
		etc		
1756	6	$3.667-0.569$	-0.252	0.984
1757	6	$3.500-0.110$	-0.282	0.630
1758	6	$3.500-0.445$	0.186	0.978
1759	6	3.500-0.525	-0.427	0.999
1760	5	$2.827-0.349$	0.386	0.969
1761	6	4.333-0.108	0.222	0.559
1762	5	$2.597-0.219$	-0.380	0.948
1764	6	3.833-0.388	0.075	0.992
1765	5	3.1730 .127	0.628	0.636

Footnotes

${ }^{1}$ See note 4 of AJPS article.
${ }^{2}$ See note 11 of AJPS article.

