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Abstract

Over the last 15 years a large amount of scholarship in legislative politics has used
NOMINATE or other similar methods to construct measures of legislators’ ideologi-
cal locations. These measures are then used in subsequent analyses. Recent work in
political methodology has focused on the pitfalls of using such estimates as variables
in subsequent analysis without explicitly accounting for their uncertainty and possible
bias (Herron and Shotts, 2003). This presents a problem for those employing NOM-
INATE scores because estimates of their unconditional sampling uncertainty or bias
have until now been unavailable. In this paper, we present a method of forming uncon-
ditional standard error estimates and bias estimates for NOMINATE scores using the
parametric bootstrap. Standard errors are estimated for the 90th Senate and the 93rd
House in two dimensions and the 105th Senate in one dimension. Standard errors of
first dimension placements are in the 0.03 to 0.08 range. The results are compared to
those obtained using the MCMC estimator of Clinton, Jackman, and Rivers (2002) for
the 105th Senate in one dimension. We also show how the bootstrap can be used to
construct standard errors and confidence intervals for auxiliary quantities of interest
such as ranks and the location of the median Senator.



1 Introduction

The purpose of this paper is to show a general method for obtaining standard errors, confi-
dence intervals, and other measure of uncertainty for the ideal point estimates obtained from
NOMINATE and other similar scaling procedures. The number of parameters estimated by
these scaling methods is so large that conventional approaches to obtaining standard errors
have proven impractical. Our approach is to use the parametric bootstrap (Efron, 1979;
Efron and Tibshirani, 1993) to obtain standard errors and other measures of estimation
uncertainty.

Nominal Three-step Estimation (NOMINATE) was originally developed by Poole and
Rosenthal (1985; 1991; 1997) to scale U.S. Congressional roll call data. The method is based
upon a probabilistic spatial voting model that utilizes a random utility function (McFadden,
1976). NOMINATE produces ideal points for the legislators and two points — one corre-
sponding to the Yea outcome and one corresponding to the Nay outcome — for every roll call
along with the parameters of the utility function. If there were 100 legislators and 500 roll
calls then NOMINATE estimates 1,101 parameters in one dimension and 2,202 parameters
in two dimensions using the 50,000 observed choices. In a classical maximum likelihood
framework the standard errors are obtained from inverting either the information matrix or
inverting the analytical Hessian matrix directly. Unfortunately, this entails inverting a very
large matrix and is computationally difficult even with modern computers.

Because of these difficulties, NOMINATE only computes conditional standard errors.
For example, the standard errors for a legislator’s ideal point prameters are obtained from
inverting just the information matrix for those parameters — the roll call parameters are fixed
and each legislator’s parameters are independent of other legislator parameters. Although
computationally easy to compute, the quality of these conditional standard errors is suspect
and they probably underestimate the true uncertainty. Indeed, Clinton, Jackman, and Rivers
(2002) show that the standard errors from W-NOMINATE are smaller than those they derive
from an MCMC approach. Unfortunately, a direct comparison is not possible because CJR
use a quadratic utility function while NOMINATE is based upon a normal distribution utility
function. Because of the computational intensity of the MCMC approach, it has of yet not



been applied to the NOMINATE model.

We bridge this gap by applying the parametric bootstrap to W-NOMINATE as well
as the Quadratic-Normal (QN) scaling procedure developed by Poole (2000; 2001). The
QN procedure is based upon the quadratic utility function so that we can compare the
bootstrapped standard errors from both procedures with the standard errors derived from
the CJR MCMC method.

In the next section we briefly describe the bootstrap. In section three, we explain how
the parametric bootstrap is applied to W-NOMINATE and QN. In section four we present
the results of applying the bootstrap to roll call data from the 90th Senate and 93rd House
in two dimensions. In section five, we compare the bootstrap results for NOMINATE and
QN to the CJR’s IDEAL model using the 105th Senate in one dimension. In section six,
we use the bootstrap to calculate the uncertainty in additional quantities of interest arising

from the ideal point estimation. In section seven, we conclude.

2 The Parametric Bootstrap

Excellent discussions of the bootstrap are provided in Efron and Tibshirani (1993), Hall
(1985), Mooney (1996), and Young (1994). We will only briefly discuss the bootstrap here
and we will focus on the less common parametric form of the bootstrap that we employ. Typ-
ically, the bootstrap is used to provide non-parametric estimates of the standard errors and
confidence intervals of estimators. This can be particularly useful in cases where robustness
to distributional assumptions is of great concern, the estimation is itself non-parametric, or
the samples are too small to rely on asymptotic approximations. In our case, the reason to
apply to the bootstrap is mainly computational convenience, though, as will be shown in
Section 6, the bootstrap also allows us to estimate the uncertainty of auxiliary quantities
of interest such as the location of the median legislator. Recovering the variance-covariance
matrix of parameter estimates by forming and inverting the full (estimated) information
matrix for roll voting models such as NOMINATE or QN is sufficiently difficult that the
bootstrap is an attractive and tractable alternative.

Following Efron (1979), let @ be a vector of parameters to be estimated and 6 be an

estimator of @ . The sampling distribution of 8 is dependent on the joint distribution of the
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data. Let F' be the joint cumulative distribution of the data. We can then write 9(F ). If
F was known, the sampling distribution of 0 could be ascertained directly by analytic or
simulation methods. Using simulation methods, repeated samples would be drawn from F,
0 calculated for each sample, and features of the sampling distribution of 0 approximated
with arbitrary precision (as the number of pseudo samples grows large).! Efron (1979) shows
that @(F) can provide a good approximation of @(F) where F is an estimate of F based
on sample data. Even in small samples approximating F' by some F will in many situ
ations provide excellent estimates of the sampling distribution of @(F ). Some asymptotic
properties of @(F) in fairly general (usually univariate) settings are given in Hall (1994) and
cites therein.

In simple settings where the data are independently and identically distributed, the
non-parametric ML estimate of the marginal distribution of each observation is simply the
empirical distribution of the observations. In this case, an approximate draw from the joint
distribution F' can be made by sampling with replacement n draws from the observed data,
where n is the number of observations . Consider the case where the data are observations
on a single variable Y. Letting 4 = (y1, %, - - ., Yn) be a vector observations on Y, drawing a
sample from F'is a matter of sampling with replacement n values in turn from y where each
element of ¢/ is selected with probability 1/n at each turn.

In cases where the data are not i.i.d., simple resampling from the data does not yield
draws from the joint distribution of F and, thus, does not yield approximate draws from
F. If the dependence in the data is temporal or spatial, “block” resampling schemes that
draw randomly groups of adjacent observations from the data have been suggested (see
Hall 1985, Hall 1994, and cites therein). In the case of roll call voting data both the rows
and columns of the data matrix are dependent. Indeed, it is these dependencies that are
exploited in recovering the ideal point and vote parameters. However, unlike time series or
spatial data, we have no er ante expectations about which elements of the vote matrix are
“close” to which others.? Given this lack of ez ante information about how to structure

a block resampling scheme, there is no obvious way (at least to us) of implementing the

. !Monte Carlo experiments, for example, posit a given F' and then recover the sampling distribution of
o0(F).
20bviously, elements in the same column or row will be expected to be particularly dependent.



non-parametric bootstrap in this case.?

On the other hand, the parametric bootstrap is easy to apply to maximum likelihood
estimators such as NOMINATE or QN. In the parametric bootstrap, F is estimated directly
from the likelihood itself. That is, the joint distribution of the data is approximated by
the likelihood evaluated at 6. In either QN or NOMINATE individual vote choices are
independent conditional on the value of the roll call and ideal point parameters. Thus,
conditional on the estimated roll call parameters and ideal points, draws from the joint
distribution of the data matrix can be made by drawing from each element of the data matrix
independently. Because the estimated parameters are not equivalent to the true parameters,
the estimated joint distribution of the data, F, differs from F, as in the non-parametric
case. Note that estimating F' based on the parameter estimates is similar to substituting
the information matrix evaluated at the estimated parameter values (as opposed to the true
values) when approximating the variance covariance matrix of ML estimators in the usual
way (see Efron 1982).

By the Slutsky theorem, the parametric bootstrap estimate of F' will be consistent if 0 is
consistent for 8. Precise conditions under which the models described above are consistent
have yet to be established. The models are known not to be consistent as the number of roll
calls or the number of legislators goes to infinity, though it may be that sending the number
of members, the number of votes, and the ratio of votes to members to infinity is sufficient
(Londregan 2000). Thus, we cannot appeal to standard asymptotic results to establish the
admissibility of the parametric bootstrap estimator in this case. However, extensive Monte
Carlo experiments on both these models and similar models in psychometrics suggest that
accurate and reliable estimates are obtained if the data matrix has rank of 100 (Lord 1983,

Poole and Rosenthal, 1997)—the rank of the Senate roll data considered below.’

3In structural equations modeling, which also involves dependent data, a non-parametric bootstrap is
possible because these models operate on the variance-covariance matrix of the data which can be simulated
by simple resampling techniques (Bollen and Stein 1992).

4To appeal to the Slutsky theorem, certain conditions must hold. In particular, F must be a continuous
function of 6.

50Our own Monte Carlo experiments confirm the effectiveness of the parametric bootstrap technique in
this setting.



3 Applications of the Parametric Bootstrap

The parametric bootstrap is very simple conceptually. In a maximum likelihood or proba-
bilistic framework, the first step is to compute the likelihood function of the sample. The
second step is to draw, for example, 1000 samples from the likelihood density and compute
for each sample the maximum likelihood estimates of the parameters of interest. Finally, the
sample variances computed from these 1000 values are the estimators of the variances of the
parameters (Efron and Tibshirani, 1993, ch. 6).

When applied to a scaling method such as W-NOMINATE, the first step is to run the
program to convergence and then calculate the probabilities for the observed choices. This
produces a legislator by roll call matrix containing the estimated probabilities for the corre-
sponding actual roll call choices of the legislators. To draw a random sample we simply treat
each probability as a weighted coin and we “flip” the coin. We do this by drawing from a
uniform distribution over zero to one —U (0, 1)— and if the random draw is less than or equal
to the estimated probability then our sampled value is the observed choice. If the random
draw is greater than the estimated probability, then our sampled value is the opposite of the
observed choice; that is, if the observed choice is Yea then our sampled value is Nay. We
then apply W-NOMINATE to this sample roll call matrix. This process is repeated 1000
times and the variances of the legislator ideal points are calculated using the 1000 estimated
bootstrap configurations.

Technically, let ¢;; be the observed choice for the ith legislator (i = 1,...,p) on the jth
roll call (j =1,...,q) where the possible choices are Yea or Nay. In the U.S. Congress there
is very little policy related abstention (Poole and Rosenthal, 1997) so we treat non-voting
as missing data. Let 15,-]@ be the estimated probability for the observed choice and let ¢ be

a random draw from U(0,1). Let ¢;; be the sampled choice. The sample rule is:

cii, if < P.
élj _ 1] ' ¢ AZ]C (1)
~ Cij, if Qb > Pijc
where ~ ¢;; represents the opposite choice to ¢;;. This technique allows the underlying

uncertainty to propagate through to all the estimated parameters. To see this, note that as



the pijc — 1, the ¢;; — ¢;; , that is, sample choices become the observed choices so that the
bootstrapped variances for the parameters of the model go to zero. If the fit of the model is
poor, for example, if the If’ijc are between 0.5 and 0.7, then the bootstrapped variances for

the parameters will be large.

3.1 The W-NOMINATE Model

The ]%jc’s estimated by W-NOMINATE are based upon a standard random utility model
(McFadden, 1976); namely, the utility for the observed choice is:

S
) w2 (@2 k)

2

Uije = Usje + €ijc = Pe + Eije (2)

where ;. is the deterministic portion of the utility function, ¢;j. is the stochastic portion,
and s is the number of dimensions. The ith legislator’s ideal point on the kth dimension
(k=1,...,8) is 24 and the policy outcome of the observed choice of the jth roll call on the
kth dimension is z;e. B is an overall signal-to-noise ratio common to all legislators and the
first dimension weight w; is set to one and the weights on the second and higher dimensions
are estimated.

The errors are distributed as the logarithm of the inverse of an exponential variable

(Dhrymes, 1978, p. 342); namely:
fle)=eF e for —oc0<e < o0 (3)

and the distribution of the difference between two errors is:

e~ (Eijn—¢ijy)

1+ e~ (Ein—eiy)]2”

f(Eijn — €ijy) = [



Let ¢ = €ijn — €i5y- The W-NOMINATE choice probabilities are:

Py, = P(Usy > Uypn)
= P(eijn — €ijy < Uijy — Uijn)

Uijn—Uijy (4)

u
_ Cijy
e%ijy +euijn

and

The likelihood function is:
p

W-NOMINATE maximizes (5) subject to a set of constraints on the legislator ideal points
and the roll call outcome points. The legislator ideal points and the midpoint of the two
policy outcome points for each roll call are constrained to be in the interval [—1, 1] in one di-
mension and in the unit hypersphere in two or more dimensions. In addition, W-NOMINATE
estimates one dimension at a time similar to the classic eigenvector extraction algorithm.
In one dimension, the most extreme legislators at opposite ends of the first dimension are
always set to -1 and +1 so that there will always be at least one legislator at -1 and at least
one legislator at +1. When additional dimensions are estimated and a legislator’s second
or higher dimension estimated coordinate moves her outside the unit hypersphere then a
grid search is conducted on the surface of the hypersphere to find the best point. Thus,
in general, no estimated coordinates are equal to 1 or -1 when more than one dimension is
estimated. A similar process is performed for the roll call midpoints.

Because of this constraint structure, W-NOMINATE is technically a constrained maximum-
likelihood method—it maximizes a likelihood function subject to several constraints. Some
these constraints identify the scale, location, and rotation of the underlying space and relax-
ing those constraints would not increases the likelihood. However, constraints beyond those
required for identification are imposed. These constraints have the effect of slightly lower-

ing the I%jc’s relative to what they would be without the constraints and the bootstrapped



standard errors for the legislators are slightly inflated as a result.

3.2 The Quadratic-Normal Model

In QN, the utility for the observed choice is:

Uije = Uije + Eije = — Z (it — Zjke)” + Eije- (6)
k=1

The errors are normally distributed so that the distribution of the difference between two

errors for legislator i on roll call j is:
f(eijy = €ign) ~ N(0,07).

The error variance in QN is allowed to vary across legislators. However, to ensure compa-
rability with W-NOMINATE, we constrain all the o; to be equal to each other. Hence our

assumption about the error is:
f(eijy = €ijn) ~ N(0,0%).

Using vector algebra, the difference between the deterministic utilities for the Yea and Nay

alternatives simplifies to:
Uijy — Uijn = 2T(Zjy — Zjn) — (Zjy + Zjn) (Zjy — Zjn) (7)

where Z; is legislator ¢’s s x 1 vector of coordinates, and zj, and 2, are the s x 1 vectors of
coordinates for the Yea and Nay alternatives, respectively. Let the s x 1 vector 2, be the

midpoint of the Yea and Nay alternatives; that is:
Vs = Ziy + Zn.

If there were no voting error, a plane could be placed in the space such that it separates

all the legislators voting Yea from all the legislators voting Nay. Geometrically, this cutting



plane is both perpendicular to the line joining the Yea and Nay policy points and passes
through the midpoint of the Yea and Nay policy points. Because the normal vector to a
plane is perpendicular to the plane, the normal vector to this cutting plane, by definition, is
parallel to the line joining the Yea and Nay policy points. Specifically, let 7; be the s x 1
normal vector for the jth roll call where 7i7i; = 1. Because 7i; and its reflection —ii; are
both normal vectors, without loss of generality, let the first coordinate in the normal vector
be greater than zero — nj; > 0. The vector zj, — Zj,,, by definition, is perpendicular to the

plane so that:
Zjy = Zjn = T (8)

where

and

k=1

1
s 2
V= — [Z(Z’jky — ijn>2] if Eljyﬁj < %nﬁj
7; is the directional distance between the Yea and Nay outcomes in the space.
Substituting (8) into (7) we get:

Uijy — Uijn = 2705105 — Vi(Zjy + Zjn) Ty = 29585005 — 2,575) = 27;(w; —my) (9)

where w; is the projection of the legislator’s ideal point onto the line defined by 7, and its
reflection —77; and m; is the projection of the midpoint of the Yea and Nay alternatives.

Equation (9) shows that:
if v; > 0 and w; > m;, or
if v; < 0 and w; < my, then w;j, > w;jy,.

The QN choice probabilities are:

A

Pijy = P(Uijy > Uijn) = P (€ijn — €ijy < Uijy — Uijn) =

27;
) X (U}Z — mj)

(e

10



and

Pyjp =1— By,

QN constrains the legislator ideal points and the roll call midpoints to lie within a unit
hypersphere. The only other constraint that is imposed occurs if a perfectly classified roll
call is encountered—that is, all legislators voting Yea are on one side of the cutting line and
all legislators voting Nay are on the opposite side of the cutting line. In this instance, the
directional distance term will want to go to infinity so that a simple constraint is imposed
to keep this from happening; namely, |v,| < 10. As we noted above, to ensure comparability
between QN and W-NOMINATE we have set all the o; to the same value, . However, since
only the ratio v; /o is identified, we adopt the standard convention of setting o = 1 and focus
on the v; in our analyses.

Before we turn to our bootstrap results note that the effect of the distance between the
Yea and Nay alternatives is different in the two models — equations (4) and (10). QN and
W-NOMINATE treat roll calls quite differently. In W-NOMINATE the roll call outcome
points are parameters (technically, they are parameterized by half the distance between the
roll call outcome coordinates and the midpoint of the two outcome coordinates). So in two
dimensions, four parameters are estimated for each roll call. In contrast, in QN a roll call
is parameterized by its normal vector, 7i;, v;, and m;. In two dimensions this is also four
parameters. The crucial geometric difference between W-NOMINATE and QN is that in QN
the position of the cutting plane is determined by 77; and m;. In W-NOMINATE the cutting
plane is inherently linked to the two outcome coordinates. In both models the distance
between the outcome coordinates cannot be disentangled from roll call specific noise (Poole
and Rosenthal, 1997). If there is a very high level of error on a roll call then the distance
between the two outcome coordinates will tend to decrease. In QN this effect is captured
in 7; while in W-NOMINATE it tends to bring the two outcome points close together near
the edge of the unit hypersphere. Hence, with very high error roll call cutting planes in
W-NOMINATE tend to be tangent to the unit hypersphere while in QN the cutting planes
can be in the interior because of the 7; parameter.

The situation is a bit different with very low error. To see this, assume a one-dimensional
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space and place a legislator at 1.0, the midpoint at 0.0, and the Yea and Nay alternatives
at 1.0 and —1.0, respectively. With § = 15 and w; = 0.5 the utility of Yea is 15 and the

~1/2_ This produces a probability of about 0.997. The corresponding QN

utility of Nay is 15e
probability is ®(4) = 0.99997 because 7; = 2. On a perfectly classified roll call the QN choice
probabilities will all be very close to 1.0 — as the «y; increases the choice probabilities increase.
In W-NOMINATE, as the distance between the Yea and Nay alternatives increases, the
choice probabilities will start to decline and eventually go to 0.5 when the distance becomes
very large.

As a practical matter this analytical difference between equations (4) and (10) does not
have a very large effect. As we show below, the constraints used by W-NOMINATE — in
part inspired by the functional form of equation (4) (Poole and Rosenthal, 1997, Appendix

A) — have more impact than the analytical difference.

4 Parametric Bootstrap Results for the 90th Senate and 93rd House

Although we obtain bootstrap estimates of the means and standard deviations of all the
parameters, we focus our analysis on the legislator ideal points because they are used in
a wide variety of secondary analyses by many researchers. Let X be the p x s matrix of
legislator coordinates estimated by either W-NOMINATE or QN. Let A = 1,...,m be the
number of bootstrap trials and let X, be the p x s matrix of legislator coordinates estimated
on the hth bootstrap trial. The legislator and roll call coordinates are only identified up to
an arbitrary rotation in the s-dimensional space. This arbitrary rotation must be removed to
ensure that the bootstrapping process produces accurate estimates of the standard deviations

of the parameters. In particular, we assume that:
X =X,V +E. (11)

V is an s x s matrix such that V'V = VV’ = I, where I, is an s x s identity matrix and
E is a p X s matrix of errors. In psychometrics, equation (11) is known as the orthogonal
procrustes problem. We use Schonemann’s (1966) solution to remove the arbitrary rotation,

V. Note that we are rigidly rotating X;, we are not altering the estimated points vis a vis
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one another in any way. Consequently, in our discussion below we will simply denote the
hth bootstrap trial matrix as X; to avoid notational clutter.

For our first example we apply the parametric bootstrap to W-NOMINATE and QN
for the 90th Senate (1967-68). We performed 1000 bootstrap trials as described above and
computed the means and standard deviations of all the estimated parameters. For example,

for the ith legislator on the kth dimension the mean of the bootstrap trials is:

Ty = 2= (12)

where m = 1000 is the number of trials and x;; is the estimated coordinate on the hth trial.

The corresponding standard deviation is:

> (Thik — Tig)?
SE (z,) = \| = — (13)

where z;;, is the coordinate estimated by W-NOMINATE or QN.

We take a conservative approach and use the estimated coordinate, Z;, rather than the
mean of the bootstrap trials, Z;,, as our “sample mean” in our calculation of the standard
deviation. This inflates the standard deviations somewhat but we feel it is better to err on

the safe side and not underreport the standard deviations.

4.1 The 90th Senate in Two Dimensions

Figure 1 shows the estimated ideal points for the 90th Senate from W-NOMINATE along
with the bootstrapped standard errors. The cross hairs through the ideal points show the 95
percent confidence intervals. The standard errors are small even for the second dimension.
On the first dimension, 97 of 101 standard errors were 0.09 or less and on the second dimen-
sion, 90 of 101 standard errors were 0.10 or less. Given that W-NOMINATE constrains the
legislator ideal points to lie within the unit circle, these standard errors are small relative
to the estimated ideal points. For most Senators the correlation between the estimated first

and second dimension coordinates is very low. Normal theory confidence ellipses are shown
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for Senators whose first dimension coordinate is correlated with their second dimension co-
ordinate at |p| > 0.15. This correlation is a consequence of the constraint that legislator
ideal points lie within the unit circle.

There is very little evidence of bias. Regressing the bootstrapped mean ideal points on
the estimated ideal points yields an r-square of 0.999 for the first dimension (bootstrap 1% =
-.017 + 1.015*W-Nom_1°!) and an r-square of .996 on the second dimension (bootstrap 2"
=.005 + 1.038*W-Nom _2"%).

The upper left-hand panel of Figure 2 shows the bootstrapped standard errors for the
two dimensions graphed against one another by Senator. As expected, the standard errors
on the first dimension are smaller than the second. Only seven Senators had larger standard
errors on the first dimension than they had on the second. Charles Goodell (R-NY) is a
notable outlier on both dimensions. He was appointed to the Senate on 10 September 1968
to replace Robert F. Kennedy. Goodell only voted on 39 roll calls of which only 31 were
scalable (2.5 percent in minority or better).

The remaining two panels in the first row of Figure 2 show the conditional standard errors
from W-NOMINATE versus the bootstrapped standard errors by dimension. As expected,
the conditional standard errors are smaller than the bootstrapped standard errors especially
on the first dimension. On the first dimension the conditional standard errors are about
half the magnitude of the bootstrapped standard errors while on the second dimension the
magnitude difference is not as large.

The second row of panels in Figure 2 display the Senator coordinates on the two dimen-
sions versus the respective bootstrapped standard errors. The unit circle constraint shows
up clearly in the plots. Senators near the edges of the space have smaller standard errors.

Figures 3 and 4 show the bootstrapping results for QN applied to the 90" Senate. Figure
3 shows the estimated ideal points for the 90" Senate from QN along with the bootstrapped
standard errors. The cross hairs through the ideal points show the 95 percent confidence
intervals. The standard errors for QN are smaller than those for W-NOMINATE. On the
first dimension, 100 of 101 standard errors were 0.09 or less and on the second dimension,
92 of 101 standard errors were 0.10 or less. As was the case for W-NOMINATE, for most

Senators the correlation between the estimated first and second dimension coordinates is
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Estimated Legislator Locations from the W-NOMINATE Model,
90th Senate
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Dimension 1

Figure 1: Shows the estimated legislator locations in two dimension based on roll calls taken
the 90th Senate. Squares represent Democrats. Circles represent Republicans. The vertical
and horizontal lines through each estimate show the 95 percent confidence intervals for
each coordinate of a given legislator’s position. For most Senators the correlation between
the estimated first and second dimension estimates is very low. Normal theory confidence
ellipses are shown of Senators whose first dimension coordinate is correlated with their second
dimension coordinates at |p| > 0.15. This correlation results from the identifying constraint
that Senators be located on the unit circle.
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Bootstrapped and Conditional Standard Error Estimates from the W-NOMINATE Model, 90th Senate
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Figure 2: The first of panels shows bootstrapped standard error estimates plotted against each other and against the conditional
standard error estimates that take the estimated roll call parameters as known. As expected, the conditional standard errors
understate the degree of uncertainty in most cases, particularly for legislators with extreme positions. The second row of panels
plots the bootstrap estimates of the standard errors of the scores aga inst the standard error estimates that condition on the

estimated roll-call parameters.
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very low. Normal theory confidence ellipses are shown for Senators whose first dimension
coordinate is correlated with their second dimension coordinate at |p| > .30. This correlation
is a consequence of the constraint that legislator ideal points lie within the unit circle.

Figure 1 and Figure 3 are very similar. QN and W-NOMINATE recover essentially the
same configuration of ideal points. Regressing the first dimension W-NOMINATE coor-
dinates on the first dimension QN coordinates produces an r-square of .982 (W-NOM 1%
= -.025 + 1.316*QN_1°") and an r-square of .958 for the corresponding second dimension
coordinates (W-NOM 2"? = 010 + 1.324*QN_2"? ). The fact that the W-NOMINATE
configuration is slightly “inflated” vis a vis the QN configuration is due to W-NOMINATE
setting the most extreme legislators at opposite ends of the first dimension to -1 and +1. In
a one-dimensional scaling there will always be at least one legislator at —1 and at least one
legislator at +1. When a second dimension is estimated, some of these legislators at or near
—1 or +1 may end up on the rim of the circle. QN estimates both dimensions simultaneously
and only constrains legislators to lie within the unit hypersphere. Hence, a typical QN con-
figuration will not be as “inflated” as the corresponding configuration from W-NOMINATE.
To make the results more comparable across methods, the QN results are re-scaled such that
the most extreme members on each end of each dimension are placed at -1 or 1.5

There is very little evidence of bias. Regressing the bootstrapped mean ideal points on
the estimated ideal points yields an r-square of .998 for the first dimension (bootstrap 1%
=-.002 + 1.039*QN _1%*) and an r-square of .996 on the second dimension (bootstrap 2"¢ =
004 + 1.078*QN_2"4).

The upper left-hand panel of Figure 4 shows the bootstrapped standard errors graphed
against one another by Senator. Just as with W-NOMINATE, the QN standard errors on
the first dimension are smaller than the second. Once again, Charles Goodell (R-NY) is a
notable outlier on both dimensions.

The next two panels of Figure 4 show the conditional standard errors from QN versus the
bootstrapped standard errors by dimension. As expected, the conditional standard errors

are smaller than the bootstrapped standard errors. On both dimensions the conditional

6This is accomplished by simple linear transformations which are applied to the ML estimates and to the
bootstrapped standard errors.
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Estimated Legislator Locations from the Quadratic Normal Model,
90th Senate
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Figure 3: Shows the estimated legislator locations in two dimension based on roll calls taken
in the 90th Senate. Squares represent Democrats. Circles represent Republicans. The
vertical and horizontal lines through each estimate show the 95 percent confidence intervals
for each coordinate of a given legislator’s position. For most Senators, the correlation between
the estimated first and second dimension estimates is very low. Normal theory 95 percent
confidence ellipses are shown of Senators whose first dimension coordinate is correlated with
their second dimension coordinates at |p| > 0.3.
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standard errors are about half the magnitude of the bootstrapped standard errors.

The bottom row of panels in Figure 4 display the Senator coordinates on the two dimen-
sions versus the respective bootstrapped standard errors. The patterns in Figure 4 for QN
are just the opposite of those for W-NOMINATE in Figure 2. In W-NOMINATE, legislators
are constrained to lie on the —1 to 41 interval when the first dimension is estimated. Because
W-NOMINATE estimates one dimension at a time this has the effect that legislators who
are extreme on the first dimension tend to lie near the unit circle when the second dimension
is estimated. Since they cannot wander out of the unit circle when the second dimension is
estimated extremists have little “wiggle room” in the W-NOMINATE framework. In con-
trast, in QN the dimensions are estimated simultaneously. The different constraint structure
in QN means that extremists have more “wiggle room”. Hence, legislators furthest from the
center (recall that we have scaled the QN coordinates to —1 to +1 for graphical purposes
only!) tend to have slightly larger standard errors. However, this difference between the
two procedures is not really that great. Note that the standard errors are small for both

procedures especially for the bulk of legislators who are not extremists.

4.2 The 93rd House In Two Dimensions

Figure 5 shows the estimated ideal points for the 93rd House (1973-74) from W-NOMINATE
along with the bootstrapped standard errors in the same format as Figures 1 and 3. The
pattern of ideal points is very similar to the 90th Senate. Both Congresses occurred dur-
ing the three political party period that lasted roughly from 1937 into the 1980s. Voting
in Congress was strongly two-dimensional during this period. The second dimension was
produced by the split in the Democratic party between Northerners and Southerners over
Civil Rights. With the passage of the Civil Rights laws in 1964, 1965, and 1967, this split
gradually disappeared by the 1980s (Poole and Rosenthal, 1997; 2001).

The upper left-hand panel of Figure 6 shows the bootstrapped standard errors for the
two dimensions graphed against one another by Represenative. The bootstrapped standard
errors on the second dimension are about 1.5 times larger than those for the first dimension
and the pattern is very similar to that shown in the corresponding panel of Figure 2 for the

90th Senate.
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Bootstrapped and Conditional Standard Error Estimates from the Quadratic Normal Model, 90th Senate
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Figure 4: The first rows of panels shows bootstrapped standard error estimates plotted against each other and against the
conditional standard error estimates that take the estimated roll call parameters as known. As expected, the conditional
standard errors understate the degree of uncertainty in most cases, particularly for legislators with extreme positions. Not
shown on right panel is Senator Goodell whose coordinates would be (0.30,0.71). The second row of panels plots the bootstrap
estimates of the standard errors of the QN scores against the estimated Senator locations. Not shown on the right panel is
Senator Goodell whose coordinates in that plot would be (—0.97,0.30).



Estimated Legislator Locations from the W-NOMINATE Model,
93rd House
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Figure 5: Shows the estimated legislator locations in two dimension based on roll calls
taken the 93rd House. Squares represent Democrats. Circles represent Republicans. The
vertical and horizontal lines through each estimate show the 95 percent confidence intervals
for each coordinate of a given legislator’s position. For most Representatives, the correlation
between the estimated first and second dimension estimates is very low. Normal theory 95
percent confidence ellipses are shown of Representatives whose first dimension coordinate is
correlated with their second dimension coordinates at |p| > 0.15. This correlation results
from the identifying constraint that Representatives be located on the unit circle.
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The next two panels of Figure 6 show the conditional standard errors from W-NOMINATE
versus the bootstrapped standard errors by dimension. The patterns here are very similar
to those in Figure 4 for the 90th Senate. The conditional standard errors are smaller than
the bootstrapped standard errors especially on the first dimension.

The bottom row of panels in Figure 6 display the coordinates of the Representatives
on the two dimensions versus the respective bootstrapped standard errors. The unit circle
constraint shows up clearly in the plots. Representatives near the edges of the space have
smaller standard errors.

Figures 7 and 8 show the bootstrapping results for QN applied to the 93rd House. Figure
7 shows the ideal points along with the bootstrapped standard errors. Consistent with our
comments above, note that the second dimension standard errors are larger than those for
the first dimension.

Figure 7 shows plots of the bootstrapped standard errors against each other by dimension
and plots them by dimension against the corresponding conditional standard errors. Once

again the conditional standard errors are smaller than the bootstrapped standard errors.
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Bootstrapped and Conditional Standard Error Estimates from the W-NOMINATE Model, 93rd House
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Figure 6: The first row of panels shows bootstrapped standard error estimates plotted against each other and against the
conditional standard error estimates that take the estimated roll call parameters as known. As expected, the conditional
standard errors understate the degree of uncertainty in most cases, particularly for legislators with extreme positions. The
second row of panels plots the bootstrap estimates of the standard errors of the W-NOMINATE scores against the estimated
Representative locations on each dimension.



Estimated legislator locations from the Quadratic Normal Model, 93rd House
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Figure 7: Shows the estimated legislator locations in two dimension based on roll calls taken
the 93rd House. Squares represent Democrats. Circles represent Republicans.
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Bootstrapped and Conditional Standard Error Estimates from the Quadratic Normal model, 93rd House
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Figure 8: The first row of panels plots the bootstrap estimates of the standard errors of the QN scores for each dimension
against each other and against the conditional standard error estimates. The second row of panels plots the bootstrap estimates
of the standard errors of the QN scores against the estimated Senator locations.



Finally, Figure 8 shows the Representative coordinates on the two dimensions versus the
respective bootstrapped standard errors. The pattern here is similar to that for the 90th
Senate shown in Figure 4. Representatives furthest from the center (again recall that we
have scaled the QN coordinates to lie between -1 and +1 for graphical purposes only) tend

to have larger standard errors.

5 Comparing W-NOMINATE, QN and IDEAL

In this section we apply the parametric bootstrap to the 105th Senate roll calls in one dimen-
sion. In this setting, the bootstrapped NOMINATE and QN estimator can be compared to
the IDEAL model of Clinton, Jackman, and Rivers (2002). The IDEAL model begins with
the same random utility model as QN. However, IDEAL is a Bayesian estimator that is esti-
mated using Markov Chain Monte Carlo (MCMC).” The standard implementation of IDEAL
as previously described in Jackman (2000a, 2000b) identifies the ideal point distribution by
imposing a N (0, 1) prior over the distribution of ideal points. This prior establishes the scale
and location of the issue dimension. However, as we will see, using the prior to identify the
model in this way leads the uncertainty of the estimates to be somewhat overstated.

In order to make the recovered issue space more comparable across models, we rescale
the QN and IDEAL results such that the most extreme members on each side of the space
are located at -1 and 1.% In this way, the intuitive underlying metric of the scale is the same,
scores from -1 to 1 and the standard errors are then roughly comparable across methods.

Figure 9 plots the results of the three methods against one another. Looking first at the
estimates themselves, we find a very high level of agreement among all three methods. All the
points in the plots fall very near to the 45 degree line and there are few differences in the rank
order recovered by each method. This result is consistent with previous comparisons of roll
scaling techniques (see Heckman and Snyder 1997; Poole and Rosenthal, 1997; Poole, 2000;

2001). Two things are striking about the standard errors estimates. First, all three methods

"IDEAL can be implemented in settings with more than a single dimension. However, because of very
different identifying restrictions, comparisons between NOMINATE or QN and IDEAL in more than one
dimension are difficult.

8In QN this involves rescaling the ML estimates and then applying that same rescaling to each bootstrap
sample. In IDEAL it involves rescaling (by the same linear transformation) all of the posterior draws such
that the mean posterior position of the two most extreme members are -1 and 1.
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Comparisons of One-dimensional Ideal Point Estimates and their Standard Errors, 105th Senate
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Figure 9: Each panels shows the estimated location or standard error of that location by two of three estimation techniques.



Correlation Among Ideal-Point Estimates and Among Their Standard Errors
from Three Different Estimators, 105th Senate

Quadratic Normal NOMINATE NOMINATE

and and and

IDEAL IDEAL Quadratic Normal

Estimate 0.988 0.991 0.998
Standard error -0.443 -0.554 -0.010

Table 1: Shows the correlations among the ideal point estimates and standard errors of
Senators’ ideal points as estimated by W-NOMINATE, QN, and IDEAL. For IDEAL, the
“standard errors” are posterior standard deviations.

yield very similar overall estimates of uncertainty. The posterior standard deviations of
IDEAL and the bootstrapped standard errors generally fall between 0.03 and 0.12. However,
there is less agreement as to which Senators are more or less reliably measured. Table
1 reports and the correlations among the point estimates and standard errors. The point
estimates all correlate at over 0.99. Consistent with what is seen in the graph, the correlation
among the standard error estimates is zero in case of NOMINATE versus QN and about —0.5
when IDEAL standard errors are compared to either NOMINATE or QN. There is also a
tendency for the IDEAL estimate to exceed the QN and the NOMINATE standard errors;
most of the points on the left two panels of the bottom row of Figure 9 fall above the 45
degree line.

A particularly difficult feature of the ideal point problem is that the information about the
space that is theoretically recoverable are the relative positions of the Senators measured up
to a constant of proportionality. For each of these models, however, the sampling/posterior
distributions include not only variation in the relative distances, but also some difference in
the choice of scale. This is easiest to see in the case of IDEAL where the average correlation
among the posterior distributions of each Senator’s location is 0.66. The reason for this this
is that the model does not sufficiently nail down the location of the scale. Uncertainty that is
associated with the estimate of each Senator’s ideal point is arising not only from uncertainty
in the relative distances between the members, but also from uncertainty in the location of

the scale itself. However, the location of the scale is arbitrary and the uncertainty that arises
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Standard Errors by Estimated Locations for Each of Three Methods
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Figure 10: Plots the standard errors against the estimated legislator locations.
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from it should not be included in the posterior variability of the estimates. By including
this uncertainty, IDEAL overstates the degree of uncertainty in what we are trying to infer,
the relative positions of the Senators. Note that including this scale uncertainty in the
posterior would not effect confidence intervals for the relative distances between members.
Indeed, one way to “purge” this scale uncertainty would be to present results in which each
ideal point is measured as its distances from some reference legislator’s ideal point.® This
reference legislator would have no estimation uncertainty in her location! The fact, that we
could choose any legislator to be the reference legislator makes it clear that the way that the
underlying space is identified will have a dramatic effect on exactly where the uncertainty in
estimates will be concentrated.

Figure 10 plots the estimated standard errors against the ideal point estimates for each of
the methods. For NOMINATE and QN which bound the support the ideal point distribution
and the location of the roll call cutpoints, those on the extremes have very small standard
errors (and as we will see in Section 6 asymmetric sampling distributions).’® On the other
hand, IDEAL places no hard constraints on the support of the issue space. In this case,
the location of the those on the ends is difficult. There are few bills whose cutpoints will
be estimated to fall further from the center than their positions, and the location of those
cutpoints will also be quite uncertain. For all three models those in the center of the distri-
bution of the ideal point distribution are measured with greater precision. This is because
there is a great deal of information in the data to discriminate among their positions (a large
number of cutpoints that fall between them). In NOMINATE and QN, the uncertainty is
greatest in the central cluster of each party’s caucus because there are fewer cutpoints that
fall among them and because they are not so extreme as to have their uncertainty bounded
by the restriction that the ideal points and cut points must lie on the -1 to 1 interval. Also,
the zero correlation between the NOMINATE and QN standard errors occurs despite the

same general pattern shown in Figure 10, because Democrats have typically smaller standard

9Note that this discussion assumes that sufficient identifying restrictions are built into the model that
only location invariance and not spread invariance is violated.

10T hese results differ from the two dimensional results because in two dimensions, the restriction that
all Senators fall in the unit circle causes the less precisely measured second dimension to affect the first
dimension locations of extremists. Note that it is extremists whose first dimension and second dimension
positions are correlated as indicated by the confidence ellipses in figures 1, 3, 5, and 7.
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Uncertainty in ideal point estimates, 105th Senate

Standard deviation  “Signal-to-

Average SE of scores noise ratio”
NOMINATE 0.059 0.671 11.37
Quadratic-Normal 0.033 0.740 22.30
IDEAL 0.073 0.555 7.60
IDEAL (normalized) 0.043 0.555 12.90

Table 2: Average standard errors are the average of the bootstrapped standard error esti-
mates across Senators for the NOMINATE and Quadratic Normal models and the average
posterior standard deviations for the IDEAL and IDEAL (normalized) models. The second
columns shows the standard deviation of the estimated scores across the 100 Senators. The
“Signal-to-noise ratio” is the ratio of the first column to the second.

errors than Republicans in the NOMINATE model and typically higher standard errors than
Republicans in the QN model. We conjecture that this difference results from the differing
utility functions.

As shown in Table 2, the average standard errors are smallest for NOMINATE and larger
for IDEAL and QN. Even though the range of the ideal point estimates have been normal-
ize to -1, 1, there is still some variation in the standard deviations in the estimates across
methods as seen in the second column of the table. The third column shows a rough “signal
to noise” ratio for the estimates, by dividing the standard deviation in the point estimates
(the signal) by the average standard error of the estimates (the noise). Even with these
adjustments, however, the table does not allow a direct comparison of the uncertainty across
methods. For example, IDEAL loads a considerable amount of uncertainty in the location
of few extreme members, while QN and NOMINATE spread the uncertainty more evenly
across members. However, making the direct comparison one might conclude from the fact
that IDEAL’s posterior standard deviations are larger than the bootstrapped standard errors
of NOMINATE that perhaps the bootstrap is understating the true uncertainty in NOM-
INATE. However, as mentioned above, much of uncertainty revealed in IDEAL’s posterior
distributions results from uncertainty in the location of the scale. When this scale uncer-
tainty is purged by normalizing each posterior draw to have mean 0, the average IDEAL

standard error falls from 0.07 to 0.04 as seen in the “IDEAL (normalized)” row of table 2. In
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the next section we make more direct comparisons of uncertainty in the models by analyzing
estimates of rank rather than interval scale position. By looking at ranks (an inherently
relative measure of location), much of the apparent difference in the uncertainty associated

with each member’s location across estimators vanishes.

6 Beyond Standard Errors: Bootstrapping Auxiliary Quantities of Interest

One particularly useful aspect of the bootstrap is that it allows us to quickly and easily
compute confidence intervals and other measures of uncertainty for many of the auxiliary
quantities of interest that can be inferred from these models. As an example, we consider
the location of the median voter in the chamber, the location of the filibuster pivot, and
the identity of the median and filibuster pivot. We also present confidence intervals for the
ordinal ranking of the members along the issue dimension.

The bootstrap provides an estimate of the complete sampling distribution of the model
parameters. Figure 11 shows histograms of the (bootstrapped) sampling distribution of the
ideal point estimates of five Senators. The figure shows how the constraints in NOMINATE
and QN limit the variability of the estimates of extremists such as Kennedy and Ashcroft
both of whom have asymmetric sampling distributions under QN and NOMINATE. On the
other hand, the posterior distributions from IDEAL show the greatest uncertainty in the
locations of the extremists. The comparison of the histograms for the raw and normalized
IDEAL posteriors show dramatically the effect of scale uncertainty.

Figure 12 shows plots the estimated rank position of each Senator on the horizontal axis
and the length of the 95 percent confidence interval for that estimated rank position on the
vertical axis. The bootstrap confidence intervals for the ranks are easily computed. For each
bootstrap sample, the ideal point estimates are ranked. The 0.025 and 0.975 quantiles of each
Senator’s rank position across the 1000 bootstrapped samples are taken as lower and upper
bounds of a 95 percent confidence interval for each Senator’s rank position. Because ranks
are inherently scale-free and relative, we see much less variation across the three methods in
Figure 12 than is shown in Figure 11. In terms of ranks, all three methods provide striking
similar estimates of uncertainty. This finding demonstrates how variation in the estimation

uncertainty across Senators’ locations is largely a function of the constraints that must be
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Sampling or Posterior Distributions for Three Ideal Point Models, 105th Senate
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Figure 11: Shows the estimated sampling distributions of the ideal point estimates of five members of the 105th Senate based
on three models/estimators. The normalized IDEAL model de-means each posterior draw across Senators as described in the
text.
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Size of Rank Confidence Interval versus Estimated Rank for Three Ideal Point Models, 105th Senate
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Figure 12: Plots the estimated rank position of each Senator in the 105th Senate against the length of the bootstrapped
confidence interval of each Senator’s rank position estimate. In all cases, the moderates and extremists have very small
confidence intervals while confidence intervals are much larger for those between the center and the wings.



Location of the Median Senator, 105th Senate

Method Estimate S.E. 95 percent CI
NOMINATE 0.14 004  (0.06,0.22)
QN 0.26 0.03 (0.20,0.32)
IDEAL -0.00 0.06 (-0.09,0.11)
IDEAL (normalized) -0.00 0.02 (-0.03,0.03)

Table 3: Shows the estimated median Senator’s location for each of three models.

imposed in order to identify the scale of the issue dimension. Once the choice of scale is
removed (as when ranks are considered), the more fundamental variation is revealed. Those
at the end of the scale can be said with great confidence to be at the ends, those in the
middle are similarly pinned down. More difficult to disentangle are the those liberal and
conservatives members located near the median of each party’s caucus.

Table 3 shows the position of the estimated chamber median for the 105th Senate.!' The
bootstrapped standard errors are calculated by finding the position of the median Senator
in each bootstrap estimate and then taking the standard deviation across those medians.
Note that the standard error of this estimate is smaller than the average standard error for
the individual members. This is true both because the median is among the members whose
ideal point is estimated to be quite small, and because the identity of the median is not
fixed across bootstrap estimates (or posterior draws in the case of IDEAL). Thus, in samples
in which a potential median voter is estimated to have a relatively more extreme position
than other nearby members, some other Senator will be estimated to be the median. The
large difference between the normalized and unnormalized IDEAL estimates arises because
the common scale uncertainty which we found in each member’s location also resides in the
estimate of the location of the median. When this scale uncertainty is purged, the uncertainty
is the location of the median falls by two-thirds.

Similar results are found for the location of the filibuster pivot and ar shown in table
4. Interestingly, while there is greater uncertainty in the location of members close to the

estimated filibuster pivot (the location of the 40th most liberal member), there are many

HTondregan and Snyder (1994) use a similar bootstrap procedure to test for committee outliers. However,
their estimates of Senators locations are based on interest groups rating scores.
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Location of the Filibuster Pivot, 105th Senate

Method Estimate S.E. 95 percent CI
NOMINATE -0.52  0.04  (-0.59,-0.45)
QN -0.47 0.03  (-0.54,-0.44)
IDEAL -0.42  0.07 (-0.53,0.29)
IDEAL (normalized) -0.41 0.02  (-0.46,-0.38)

Table 4: Shows the estimated location and standard error of the filibuster pivot in the 105th
Senate.
Who was the Median Senator in the 105th Senate?
NOMINATE QN IDEAL

Collins 0.595 0.728  0.609
D’Amato 0.243 0.201  0.301
Snowe 0.157 0.068  0.089
Chafee 0.005 0.003  0.001

Table 5: Table shows for NOMINATE and QN the bootstrapped sampling distribution over
the identity of the median Senator in the 105th Senate. For the Bayesian IDEAL model,
each value is the posterior probability that a given member is the median. * = less than
0.001.

more members who are in close proximity to it. Thus, the standard error of the estimated
pivot position is similar to that of the estimated median. Again we see a large reduction in
the standard error of the IDEAL estimate when it is purged of scale uncertainty.

Tables 5 and 6 show the sampling distributions over the identities of the median and
filibuster pivot Senator. For the Bayesian IDEAL estimator this can be directly interpreted
as the posterior probability that a given Senator was in fact the median or the pivot. For the
frequentist QN and NOMINATE models, we cannot correctly make the same interpretation.
Nor, however, can these probabilities be construed as p-values for tests of the hypothesis that
a given Senator is the median or filibuster pivot because these probabilities are conditional
on the estimated model and not on the validity of the null hypothesis. However, they do
give us a measure of confidence in the assertion that a particular member was indeed the

filibuster pivot or median.
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Who was the Filibuster Pivot in the 105th Senate?
NOMINATE QN IDEAL

Bryan * * 0.016
Kohl * 0.013  0.048
Bob Kerrey 0.011 0.004  0.002
Biden 0.012 0.004  0.008
Moynihan 0.022 0.027  0.031
Reid 0.027 0.014 0.015
Robb 0.031 0.064 0.079
Ford 0.033 0.061  0.092
Lieberman 0.056 0.093 0.121
Landrieu 0.068 0.018  0.005
Bob Graham 0.103 0.173  0.193
Hollings 0.161 0.198  0.226
Baucus 0.188 0.234 0.145
Byrd 0.213 0.075 0.019

Table 6: Table shows for NOMINATE and QN the bootstrapped sampling distribution over
the identity of the filibuster pivot Senator in the 105th Senate. For the Bayesian IDEAL
model, each value is the posterior probability that a given member is the filibuster pivot.
* = less than 0.001.

7 Conclusion

Our results show that the parametric bootstrap is an effective method to obtain standard
errors for the parameters of ideal point estimation methods. We show that in general the
standard errors for NOMINATE and QN scores are relatively small. We also show how the
bootstrap can be used to provide estimates of the many quantities of interest associated with
ideal point estimates.

In future work we will describe how bootstrapped estimates can be used to correct for
measurement error in regression models in which NOMINATE scores are used as dependent
or independent variables.'?> We also plan to make bootstrapped NOMINATE estimates avail-
able to researchers, so that in future work scholars can incorporate the call of methodologists
such as Herron and Schotts (2003) to explicitly account for the estimation uncertainty in the

variables that are used in subsequent analysis.

12Brownstone and Valletta (1996) take as similar approach in a related area.
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