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Abstract

The purpose of this paper is to show how the geometry of the quadratic utility

function in the standard spatial model of choice can be exploited to estimate a model of

Parliamentary roll call voting.  In a standard spatial model of Parliamentary roll call

voting, the legislator votes for the policy outcome corresponding to Yea if her utility for

Yea is greater than her utility for Nay.  The voting decision of the legislator is modeled as

a function of the difference between these two utilities.  With quadratic utility, this

difference has a simple geometric interpretation that can be exploited to estimate

legislator ideal points and roll call parameters in a standard framework where the

stochastic portion of the utility function is normally distributed.  The geometry is almost

identical to that used in Poole (2000) to develop a non-parametric unfolding of binary

choice data and the algorithms developed by Poole (2000) can be easily modified to

implement the standard maximum likelihood model.
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1. Introduction

The purpose of this paper is to show how the geometry of the quadratic utility

function in the standard spatial model of choice can be exploited to estimate a model of

parliamentary roll call voting.  The quadratic utility function has a long history.

Beginning with the earliest papers of Davis and his colleagues (Davis and Hinich, 1966,

1967; Davis, Hinich, and Ordeshook, 1970), it has played an important role in the spatial

theory of voting and elections.  The quadratic utility function is analytically simple and

has a number of mathematical properties that make it easy to work with for modeling

purposes.  For example, it is symmetric around, and has a unique maximum at, the

individual’s ideal point.

In a standard spatial model of Parliamentary roll call voting, the legislator votes for

the policy outcome corresponding to Yea if her utility for Yea is greater than her utility

for Nay.  The voting decision of the legislator is modeled as a function of the difference

between these two utilities.  The difference between two quadratic utilities has a simple

geometric interpretation that can be exploited to estimate legislator ideal points and roll

call parameters in a standard framework where the stochastic portion of the utility

function is normally distributed.  In particular, the geometry is almost identical to that

used in Poole (2000) to develop a non-parametric unfolding of binary choice data.  The

algorithms developed by Poole (2000) can be easily modified to implement a standard

maximum likelihood model where the deterministic portion of the utility function of the

legislators is quadratic and the stochastic portion is normally distributed.

Section 2 defines the problem and explains the notation used in the paper.  Section 3

shows the geometry of the quadratic utility model and discusses the plausibility of the
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three major error distributions – normal, logit, and uniform – that have been used by

researchers to estimate the parameters of spatial models.  Section 4 briefly discusses the

scaling method developed by Poole (2000).  The geometry of this scaling method is

essentially the same as that shown in section 3.  Section 5 shows how the algorithms

developed in Poole (2000) can be used to estimate the parameters of a standard maximum

likelihood model where the deterministic portion of the utility function of the legislators

is quadratic and the stochastic portion is normally distributed.  A quadratic utility scaling

of the 90th House of Representatives shows that the algorithm is stable and produces

sensible results.  Section 6 concludes.

2.  Notation1 and Definitions

Assume that legislators have Euclidean preferences defined over some

multidimensional ideological/policy space and that they vote sincerely for the alternative

closest to their ideal point.  Let p be the number of legislators (i=1,…,p) and s be the

number of dimensions (k=1,…,s).  The ith legislator’s ideal point on the kth dimension is

denoted by xik and let X be the p by s matrix of legislator ideal points.  Each roll call vote

has two policy points in the space corresponding to the policy consequences of a Yea or

Nay vote on the roll call.2  Let q be the number of roll calls (j=1,…,q) and coordinates for

the Yea and Nay outcomes are denoted by zjky and zjkn respectively.  Let “c” indicate the

outcome (Yea or Nay) chosen by legislator i, and let “b” indicate the outcome not chosen

by legislator i.  This notation will considerably simplify the exposition below.

If there were no voting error, a plane can be placed in the space such that it

separates all the legislators voting Yea from all the legislators voting Nay.

Geometrically, this cutting plane is both perpendicular to the line joining the Yea and
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Nay policy points and passes through the midpoint of the Yea and Nay policy points.

Because the normal vector to a plane is perpendicular to the plane, the normal vector to

this cutting plane, by definition, is parallel to the line joining the Yea and Nay policy

points.  Specifically, let nj be the s by 1 normal vector for the jth roll call and let N be the

q by s matrix of normal vectors for the q cutting planes.  A plane is defined as the vector

equation, z′′ nj = v′′ nj , where z, nj, and v are s by 1 vectors and the plane consists of all

points z such that (z - v) is perpendicular to the normal vector, nj, and v is a specific point

in the plane.  Note that if v1, and v2 are both points in the plane then, v1′′ nj = v2′′ nj = mj,

where mj is a scalar constant.  Geometrically, every point in the plane projects onto the

same point on the line defined by the normal vector, nj and its reflection -nj.  Because the

midpoint of the Yea and Nay policy points is on the cutting plane, it too projects to the

point mj.

Technically, the general equation for a line is:

Y(t) = A + t(B – A)

Where A and B are points in the space and t is a scalar.  In this instance, A is placed at

the origin of the space so that the equation for the line defined by the normal vector, nj

and its reflection -nj is simply

Y(t) = tnj                                             (1)

where –1 ≤ t ≤ +1.

To set the scale of the voting space, let the legislator coordinates lie within the s

dimensional unit hypersphere and let the origin of the space be placed at the centroid of

the legislator coordinates; that is, let

s
2
ik

k=1

x  1≤≤∑∑    , i=1,...,p     and     
p

ik
i=1

x  0==∑∑    , k=1,...,s
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In addition, without loss of generality, the normal vector, nj, can be constrained to be of

unit length; i. e., nj′′ nj = 1.

Let the projections of the legislator points onto the line defined by equation (1)

be:

                                                           Xnj = w                                                    (2)

Note that the elements in the p-length vector, w, range from -1 to +1.  The elements in w

all lie on the line defined by equation (1) that passes through the origin of the s-

dimensional unit hypersphere in the direction of the normal vector with exit points -nj

and +nj respectively. This line will hereafter be referred to as the projection line.

3.  The Quadratic Utility Model

Given these definitions, legislator i’s utility for her chosen outcome, c, on roll call

j is:

Uijc = uijc + εε ijc = 
s

2
ik jkc

k 1

(x  - z )
==

∑∑  + εε ijc                      (3)

Where uijc is the deterministic portion of the utility function and εε ijc is the stochastic

portion.

The probability that legislator i votes for her chosen outcome, c, is

P(Uijc > Uijb ) = P(εε ijb - εε ijc < uijc - uijb )                                (4)

The Deterministic Portion of the Utility Function

The difference between the deterministic utilities can be simplified as follows:

uijc - uijb = 
s s

2 2
ik jkc ik jkb

k 1 k 1

(x  - z )  - (x  - z )
= == =

∑ ∑∑ ∑
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= 
s s s s s s

2 2 2 2
ik ik jkc jkc ik ik jkb jkb

k 1 k 1 k 1 k 1 k 1 k 1

x  - 2 x z  + z  - x  + 2 x z  - z
= = = = = == = = = = =

∑ ∑ ∑ ∑ ∑ ∑∑ ∑ ∑ ∑ ∑ ∑

= 
s s

ik jkb jkc jkb jkc jkb jkc
k 1 k=1

2 x (z  - z ) - (z  - z )(z  + z )
==

∑ ∑∑ ∑              (5)

Now, note that the s by 1 vector:

zjb - zjc = 

j1b j1c

j2b j2c
.
.

jsb jsc

z  - z

z  - z

z  - z

  
  
  
  
  
    

is equal to a constant times the normal vector, nj (see Figure 1).  Namely,

γγ jnj = zjb - zjc                                                 (6)

where

γγ j = +

1
s 2

2
jkb jkc

k 1

(z  - z )
==

  
  
  
∑∑  if zjb′′ nj > zjc′′ nj or

γγ j = -

1
s 2

2
jkb jkc

k 1

(z  - z )
==

  
  
  
∑∑  if zjb′′ nj < zjc′′ nj

γγ j is the directional distance between the Yea and Nay outcomes in the space.

__________________
Figure 1 about Here

__________________

The s by 1 vector

zjb + zjc = 

j1b j1c

j2b j2c
.
.

jsb jsc

z  + z

z  + z

z  + z

  
  
  
  
  
    
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divided by 2 is simply the s by 1 vector of midpoints for the Yea and Nay outcomes for

roll call j.  That is:

zmj = jb jcz  + z

2

This allows equation (5) to be rewritten as the vector equation:

uijc - uijb = 2γγ j(xi′′ nj - zmj′′ nj ) = 2γγ j(wi – mj)                  (7)

where wi is the projection of the ith legislator’s ideal point onto the projection line as

defined by equation (1), and mj is the projection of the midpoint of the roll call outcomes

onto the projection line.  Equation (7) shows that:

if γγ j > 0 and wi > mj, or

if γγ j < 0 and wi < mj, then uijc > uijb

In one dimension, nj is equal to 1 and γγ j = zjc - zjb.  Hence, equation (1) becomes

simply 2(zjc - zjb)(xi - zmj) = 2γγ j(xi – mj).  Except for an added “valence” dimension, this is

identical to the one dimensional model developed by Londregan (2000, p. 40-41).

Specifically, in Londregan’s notation, g = (zjc - zjb.), xv = xi , and m = zmj.3  Now, note

that

if zjc > zmj and xi > zmj  or

if zjc < zmj and xi < zmj, then uijc > uijb

If voting is sincere and without error then 2γγ j(wi – mj) > 0 for all i and j and, in

one dimension, the legislator ideal points and the roll call midpoints are only identified

up to a joint rank ordering.  With “perfect” voting in more than one dimension, if a

variety of voting coalitions form amongst the legislators, then the cutting planes will

intersect one another in a myriad of directions creating a maximum of ∑∑
==






s

0k k

q
 regions in
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the policy space (Coombs, 1964, p. 262).  Each region corresponds to a unique voting

pattern on the q roll calls – e.g., YYYNNYNYNYYY….  Hence, a legislator’s ideal

point is identified up to a region in the space.  Note however, that as q gets large the

number of regions explodes so that the volume of these regions is extremely small.  For

example, with 500 roll calls, there are a maximum 125,251 regions in two dimensions

and a maximum of 20,833,751 in three dimensions.4  Most of these regions are so small

that a typical legislator’s point is very precisely pinned down (Poole, 2000).5  Similarly,

with a large number of legislators, the cutting plane – defined by the normal vector, nj,

and the midpoint of the roll call, mj -- is also precisely pinned down (Poole, 2000).

To reiterate, if voting is perfect, that is, sincere and without error, then in one

dimension the legislator ideal points and the roll call midpoints are only identified up to a

joint rank ordering.  In more than one dimension, legislators are identified up to regions

in the space (polytopes) and roll calls are identified up to cone shaped regions containing

the normal vectors and line segments on the normal vectors for the midpoints.  These

limits on identification arise because the data are simply Yea and Nay.  If legislators

could report “thermometer scores” for the alternatives then the perfect case would have

an exact solution.

The Stochastic Portion of the Utility Function

Superficially, it is the stochastic portion of the utility function that allows for

more precise solutions for the legislator ideal points and roll call parameters.  However,

as Londregan (2000) proves, this precision is, to an extent, an illusion.  Londregan shows

that consistency in its usual statistical sense does not hold in the roll call voting problem

outlined above.  With nominal choices standard maximum likelihood estimators that
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attempt to simultaneously recover legislators’ ideal points and roll call parameters inherit

the “granularity” of the choice data and so cannot recapture the underlying continuous

parameter space.  However, when the number of roll calls and legislators is large, the bias

in the estimated parameters is not severe (Londregan, 2000).6

Turning to the stochastic portion of the utility function stated in equation (3)

above, three probability distributions have been used to model the error; the normal

(Ladha, 1991; Londregan, 2000), uniform (Heckman and Snyder, 1997), and logit (Poole

and Rosenthal, 1997).  The normal is clearly the best from both a theoretical and a

behavioral standpoint.

From a statistical standpoint, given the difference between the two random errors,

εε ijb - εε ijc , the standard assumptions are that εε ijb and εε ijc are a random sample (independent

and identically distributed random variables) from a known distribution.  Hence, it is

therefore easy to write down the probability distribution of the difference -- εε ijb - εε ijc.

From a behavioral standpoint, it seems sensible to assume that the distributions of εε ijb and

εε ijc are symmetric and unimodal and that εε ijb and εε ijc are uncorrelated.  The normal

distribution is the only one of the three distributions to satisfy all these criteria.  To

illustrate, assume that εε ijb and εε ijc are drawn (a random sample of size two) from a normal

distribution with mean zero and variance one-half.  The difference between the two errors

has a standard normal distribution; that is

εε ijb - εε ijc ~ N(0, 1)

Hence, the probability that legislator i votes for her chosen outcome, c, can be rewritten

as:

Pijc = P(Uijc > Uijb ) = P(εε ijb - εε ijc < uijc - uijb ) =
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ΦΦ [2γγ j(xi′′ nj - zmj′′ nj )] = ΦΦ [2γγ j(wi – mj)]                          (8)

Heckman and Snyder (1997) assume that εε ijb - εε ijc has a uniform distribution.

This is an extremely problematic assumption because εε ijb and εε ijc cannot be a random

sample!7  Assuming that εε ijb - εε ijc has a uniform distribution enables Heckman and Snyder

to develop a linear probability model but the price for this simplicity is that they have no

intuitive basis for a behavioral model.

Poole and Rosenthal (1985, 1991, 1997) assume that εε ijb and εε ijc are a random

sample from the log of the inverse exponential distribution.  Consequently, εε ijb - εε ijc has

the logit distribution.  The log of the inverse exponential and the logit distribution which

is derived from it, are unimodal but not symmetric.8  However, they are not too skewed

and the distribution function of the logit distribution is reasonably close to the normal

distribution function. 9

A further difficulty with the approaches taken by both Heckman and Snyder and

Poole and Rosenthal is that they assume that the error variance is homoskedastic.  A more

realistic assumption is that the error variance varies across the roll call votes and across

the legislators.  For the roll calls, it is impossible to distinguish between the underlying

unknown error variance and the distance between the Yea and Nay alternatives (Ladha,

1991; Londregan, 2000).  The intuition behind this is straightforward.  As the distance

between the Yea and Nay alternatives increases, the easier it is for legislators to

distinguish between the two policy outcomes and the less likely it is that they make an

error.  Conversely, if the Yea and Nay alternatives are very close together, then the utility

difference is small and it is more likely that voting errors occur.  Increasing/decreasing

the distance is equivalent to decreasing/increasing the variance of the underlying error.
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Because γγ j is picking up the roll call specific variance, the difference between the

two errors for legislator i on roll call j can be modeled as:

εε ijb - εε ijc ~ 2
iN(0, )σσ

With heteroskedastic error equation (8) becomes:

   ijb ijc ijb ijc j
ijc i j

i i i

 - u  - u 2
P  = P(  < ) = [ (w  - m )]

ε ε γε ε γ
ΦΦ

σ σ σσ σ σ
               (9)

The corresponding likelihood function is therefore:

L = 
p q

ijc
i 1 j 1

P
= == =

∏∏∏∏                                                     (10)

The approach developed in section 5 below allows the error to be heteroskedastic.

The algorithms developed by Poole (2000) can be used to obtain excellent estimates for

the legislator points, the xi‘s, the roll call normal vectors, the nj‘s, and the cutpoints, the

mj’s.  With these fixed, the γγ j and σσ i can be estimated.

In sum, the normal distribution is the most sensible model of error both from a

mathematical standpoint as well as a behavioral standpoint.  Consequently, it will be the

focus of the model developed in this paper.

4.  The Classification Algorithm

Poole (2000) develops a new scaling method for analyzing parliamentary roll call

data.  The scaling method uses almost exactly the same geometry as that shown for the

difference between two quadratic utilities shown above.  Given the legislator coordinates,

the scaling method estimates cutting planes for each roll call; and given the cutting

planes, the method finds the region in the space that best matches the legislator’s roll call

choices.  The scaling method is non-parametric because no assumptions are made about
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the probability distribution of the legislators’ errors in making choices.  The only

assumptions made are that the choice space is Euclidean and that individuals making

choices behave as if they utilize symmetric, single-peaked preferences.

Strictly speaking, the scaling method developed in Poole (2000) is not a statistical

model.  However, as shown in the next section, the algorithms developed by Poole (2000)

can be easily modified to implement a standard maximum likelihood model where the

deterministic portion of the utility function of the legislators is quadratic and the

stochastic portion is normally distributed.

The classification algorithm uses the geometry outlined above along with the

assumption that preferences are symmetric and single peaked to find estimates of X and

N.  The rule for correct classification is:

If legislator i votes c:  δδ ij = 1 if wi ≥ mj and zjc′′ nj > mj, or wi < mj and zjc′′ nj < mj

δδ ij = 0 if wi < mj and zjc′′ nj > mj, or wi > mj and zjc′′ nj < mj

In other words if the legislator votes “Yea”/”Nay” and her ideal point is on the Yea/Nay

side of the plane, the legislator’s vote is correctly classified.  Note that the assumption of

symmetric single-peaked preferences means that if a legislator votes “Yea” and her ideal

point is anywhere on the Yea side of the plane then that counts as a correct classification.

If preferences are not symmetric then this might not be true.

The total correct classification is therefore:

δδ (X, N) = ∑∑ ∑∑
== ==

δδ
p

1i

q

1j
ij                                          (11)

In sum, given the number of dimensions, s, the classification problem consists of finding

estimates of X and N that maximize equation (11).
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5.  An Algorithm to Estimate the Multidimensional Quadratic Utility Model

Note that if δδ ij = 1, then j

i

2γγ
σσ

(wi – mj) > 0 and ΦΦ [ j

i

2γγ
σσ

(wi – mj)] > .5; and

if δδ ij = 0, then j

i

2γγ
σσ

(wi – mj) < 0 and ΦΦ [ j

i

2γγ
σσ

(wi – mj)] < .5

In other words, the classification algorithm, which is intended to maximize equation (11),

will also tend to maximize equation (10).  Given estimates of X, N, and the mj’s from the

classification algorithm -- denoted as X*, N*, and mj* respectively --  it is a simple

matter to estimate the γγ j and σσ i terms because the likelihood function is convex if the roll

call cannot be classified without error.  With a finite number of legislators, there will be

roll calls where |γγ j | will be very large because the roll call is so important or the

information is so complete that no legislator makes an error.  However, if the roll call can

be classified without error then |γγ j |→→  +∞∞ -- that is, the probabilities assigned to the

choices of the p legislators will go to 1 on a “perfect” roll call.  This does not present a

problem since Pijc can be set equal to 1 and its corresponding log-likelihood can be set

equal to 0.

The multidimensional quadratic utility model can be efficiently estimated in four

steps.  First, using X*, N*, and the mj* from the classification algorithm, set all the σσ i

equal to 1 and estimate the γγ j‘s using a simple grid search.  Given these γγ j‘s estimate the

σσ i‘s using a simple grid search.  Repeat this process until there is no significant

improvement in the log-likelihood.  In practice, this takes no more than three repetitions.

Second, given N* and the mj* from the classification algorithm and the estimated γγ j‘s and

σσ i‘s from step 1, estimate new legislator coordinates, X.  This is easily accomplished



15

using standard gradient techniques.  Third, given N* from the classification algorithm,

the estimated γγ j‘s and σσ i‘s from step 1, and the estimated legislator coordinates, X, from

step 2, estimate new projected midpoints, the mj, using a simple grid search.  Fourth,

given the estimated γγ j‘s and σσ i‘s from step 1, the estimated legislator coordinates, X, from

step 2, and the estimated projected midpoints, the mj, from step 3, estimate new normal

vectors, the nj.  This is easily accomplished using standard gradient techniques with the

constraints that nj’nj = 1 and that zmj = mjnj.  In other words, the point defined by the end

of the normal vector is moved along the surface of the unit hypersphere with the position

of the projected midpoint held fixed on the normal vector as it is moved.  Geometrically,

this is equivalent to moving the cutting plane rigidly through the space as its normal

vector is moved.

In summary, the algorithm is:

Step 1a: Estimate the γγj

Step 1b: Estimate the σσi

Step 1c: Repeat a and b Until convergence

Step 2: Estimate the xi

Step 3: Estimate the mj

Step 4: Estimate the nj

Go to 1a

In one dimension, given a joint rank ordering of the legislators and roll call midpoints

from the classification algorithm, step 4 is not necessary and the legislator coordinates in

step 2 can be found through a simple grid search.  In practice only 3 overall passes

through steps 1 to 4 are required for the program to converge.
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Table 1 and Figures 2 to 6 show an application of the quadratic utility algorithm

to the 90th House of Representatives.  Table 1 shows the scaling results for the quadratic

algorithm for 1 to 10 dimensions.  The corresponding correct classifications from the

optimal classification algorithm are also shown for comparative purposes.  Figure 2

graphs the increase in fit from adding dimensions.  The increase in geometric mean

probability (GMP) from adding a dimension was multiplied by 100 so it could be graphed

on the same scale as the increase in classification.  After the 2nd dimension the

incremental increase from adding a dimension is quite small.  This is a classic “elbow”

indicating the correct dimensionality is at most three and almost certainly two.10

__________________________
Table 1 and Figure 2 about Here
__________________________

Figure 3 shows a plot of the legislator ideal points for the 90th House.  The “d”,

“s”, and “r” tokens indicate Northern (Non-Southern) Democrats, Southern Democrats,

and Republicans respectively.11  The two dimensions are liberal-conservative

(government intervention in the economy) and Race (North vs. South).  The

configuration is the same as the recovered by NOMINATE, Heckman-Snyder, and the

optimal classification algorithm.12  An analysis of the structure of voting during this

period of American history can be found in Poole and Rosenthal (1997) and McCarty,

Poole, and Rosenthal (1997).

__________________
Figure 3 about Here

__________________
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Figure 4 shows a histogram of the estimated normal vectors in terms of their

angles from –90 to +90 degrees.  A normal vector at an angle of –45 degrees produces a

cutting plane at +45 degrees parallel to the “channel” between the two political parties.  A

normal vector at an angle between +45 degrees and about +20 degrees produces cutting

planes that are potential “conservative coalition” votes.  That is, cutting planes that run

between the two wings of the Democratic Party with a majority of Republicans on the

side of the Southern Democrats.

_________________
Figure 4 about Here
_________________

Figures 5 and 6 show histograms of the σσ i‘s and γγ j‘s respectively.  The mean and

standard deviation of the σσ i‘s is .995 and .40 respectively.  The mean and standard

deviation of the γγ j‘s is 4.46 and 2.55 respectively.  Both are weakly related to their

corresponding correct classifications.  The Pearson r between the σσ i‘s and the correct

classification percentages for the legislators is -.59.  The Pearson r between the γγ j‘s and

the correct classification percentages for the roll calls is .66.  Although the distributions

of the σσ i‘s and γγ j‘s appear to be quite reasonable, without a comprehensive Monte-Carlo

study of the quadratic procedure it is not possible to make definitive statements about

them at this time.

______________________
Figures 5 and 6 about Here
______________________
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6.  Conclusion

The purpose of this paper was to show how the geometry of the multidimensional

quadratic utility function could be exploited to estimate legislator ideal points and roll

call normal vectors and cutpoints in a standard framework where the stochastic portion of

the utility function is normally distributed.  The algorithm shown in section 5 appears to

be quite stable and produces sensible results.  However, a comprehensive Monte-Carlo

study is needed to pin down all the properties of the scaling algorithm.
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Table 1

Scaling Results for the 90th House:
389 Roll Calls, 438 Legislators, 147,199 Total Choices

Optimal
Classification Quadratic Utility Scaling

Dimension
Percent
Correct
Class.

APRE
Percent
Correct
Class.

APRE GMP

1 87.85 .573a 85.42 .488 .728b

2 90.34 .661 88.53 .597 .772

3 91.09 .687 89.31 .624 .783

4 91.50 .701 89.63 .636 .787

5 91.97 .718 90.05 .651 .795

6 92.33 .731 90.42 .664 .801

7 92.66 .742 90.78 .676 .807

8 92.98 .753 91.10 .687 .813

9 93.26 .763 91.34 .696 .817

10 93.52 .773 91.65 .707 .823

a APRE = 

q

j
j 1

q

j
j 1

{Minority Vote - Classification Errors}

{MinorityVote}

==

==

∑∑

∑∑

b Geometric Mean Probability:  The exponential of the average log –likelihood; that
is: GMP = exp[log-likelihood of all observed choices/N].
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Endnotes

                                                
1  The notation in this paper with some minor variations is the same as that used in Poole and Rosenthal
(1997), McCarty, Poole, and Rosenthal (1997), and Poole (2000).

2  This model was first proposed by MacRae (1958) and later developed by Poole and Rosenthal (1997) in
their NOMINATE procedure.

3  Specifically, the utility function used by Londregan is:
        U(z, q| xv ) = (-1/2)(z - xv )2 + αq
The αq picks up a “valence” element of policy.

4  Although the number of regions is very large, there are 2q possible voting patterns and in practical
applications this number will greatly exceed the maximum number of regions in the space.  Finding the
region that best matches the legislator’s observed pattern of roll call votes is extremely difficult.  For a
solution, see Poole (2000).

5  Actually measuring the volume of these regions is very difficult and is a problem that has not been
satisfactorily solved (Best, Young, and Hall, 1979; Poole, 2000).

6  Londregan cites the Monte Carlo work of Lord (1983) and Poole and Rosenthal (1991).  Lord’s Monte
Carlo work was on the Rasch (1961) model used in ability tests (which is isomorphic with the one
dimensional spatial model with quadratic utility [Ladha, 1991; Londregan, 2000]) and Poole and
Rosenthal’s work was done on their NOMINATE model.  In the NOMINATE model the deterministic
utility function is the normal distribution and the stochastic utility is the logit distribution.  Both sets of
studies indicate that when the questions/legislators are at least 100, the bias is not very large.  This is
confirmed by Monte Carlo studies shown in Poole (2000, Appendix).

7  Heckman and Snyder (1997) acknowledge that no distribution exists such that the probability distribution
of the difference between two random draws has a uniform distribution.  For example, if εε ijb and εεijc are
drawn from a uniform distribution, then the distribution of their difference will be a triangle shaped
distribution.

8  The log of the inverse exponential is :  
-å-å -ef(å) = e e where -∞∞  < εε  < +∞∞ .  The “logit” distribution is the

distribution of the difference between two random draws of the log of the inverse exponential.  That is:
-y

-y 2

e
f(y) = 

(1 + e )
 where y = εε ijb - εε ijc and -∞∞  < y < +∞∞  (see Dhrymes, 1978, pp. 340-352 for the

derivation).  Note that integrating f(y) from  -∞∞  to x yields the distribution function, -x

1
F(x) = 

1 + e
,

which, in the parliamentary roll call voting context is:  
ijb ijcijc -(u  - u )

1
P  = 

1 + e
 .

9  The logit distribution is somewhat of a “Y2K” phenomenon.  The normal distribution is a much more
sensible model of error but when computing resources were scarce the fact that the distribution function of
the logit distribution is a formula (what economists call a “closed form”) in contrast to the distribution
function of the normal which must be calculated through a series expansion, made the logit model
especially attractive.  However, there is no longer any reason to use the logit distribution in most simple
problems because computer memory is now so plentiful that the distribution function of the normal can be
calculated to any practical level of precision required and simply stored in memory (the corresponding logs
and portions of the partial derivatives can also be stored in memory).  Performing a table look-up is fast and
simple to accomplish.
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10  Reinforcing this conclusion is the pattern of eigenvalues from a Heckman-Snyder decomposition.  The
first 10 eigenvalues are:  25.22, 4.85, 1.16, 0.95, 0.83, 0.68, 0.65, 0.61, 0.52, 0.50.

Another measure is the pattern of eigenvalues from the double-centered legislator-by-legislator
agreement score matrix.  Technically, given a matrix of squared distances, double-centering is subtracting
from each entry in the matrix the mean of the row, the mean of the column, and adding the mean of the
matrix.  This has the effect of removing the squared terms from the matrix leaving just the cross-product
matrix.  It also reduces the rank of the matrix by one (see Young and Householder, 1938; Ross and Cliff,
1964).  For example, let A be an n by s matrix of coordinates.  Let diag(AA’) be the n length vector of
diagonal terms of AA’ and let Jn be an n length vector of ones.  The matrix of squared distances can be
written as:  diag(AA’)Jn’ – 2AA’ + Jndiag(AA’)’.  Double-centering eliminates the squared terms leaving
only the cross product term.  The first ten eigenvalues are:  32.56, 7.37, 2.39, 1.54, 1.33, 1.13, 1.03, .96,
.82, .78.

11  The Southern states are the 11 states of the Confederacy plus Kentucky and Oklahoma.  This is the
definition used by Congressional Quarterly and the definition used throughout Poole and Rosenthal (1997).

12  To calculate the fit between two legislator configurations, the legislator coordinates in Figure 3 were
rotated to best match the NOMINATE, Heckman-Snyder, and optimal classification configurations using
Schonemann’s (1966) technique.  The r-squares between the corresponding legislator coordinates on the
first and second dimensions were .986 and .977 respectively for NOMINATE, .959 and .941 respectively
for Heckman-Snyder, and .980 and .919 respectively for optimal classification.


