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Abstract

Empirical models of spatial voting allow legislators’ locations in a policy or ideological
space to be inferred from their roll call votes. These are typically random utility models
where the features of the utility functions other than the ideal points are assumed
rather than estimated. In this paper, we first consider a model in which legislators’
utility functions are allowed to be a mixture of the two most commonly assumed utility
functions: the quadratic function and the Gaussian function assumed by NOMINATE.
Across many roll call data sets, we find that legislators’ utility functions are estimated
to be very nearly Gaussian. We then relax the usual assumption that each legislator is
equally sensitive to policy change and find that extreme legislators are generally more
sensitive to policy change than their more centrally located counterparts. This result
suggests that extremists are more often ideologically rigid while moderates are more
likely to consider influences that arise outside liberal–conservative conflict.
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1 Introduction

Over the past twenty-five years, the study of Congress has increasingly involved the analysis

of roll call voting data. Empirical models of spatial voting, often referred to as ideal point

estimators, allow legislator locations in an abstract policy or ideological space to be inferred

from their roll call votes. These models have provided new insights about the US Congress

in particular and legislative behavior more generally (see, for example, Poole and Rosenthal,

1985, 1991, 1997; McCarty et al., 1997, 2006; Poole, 2000, 2005; Heckman and Snyder, 1997;

Myagkov and Kiewiet, 1996; Jenkins, 1999; Rosenthal and Voeten, 2004; Clinton et al., 2004;

Desposato, 2006; Hix et al., 2007; Schonhardt-Bailey, 2003; Shor et al., 2010). Recently

ideal point models have also been applied to voting in non-legislative voting bodies such

as the United Nations (Voeten, 2000) and the EU Council of Ministers (Hagemann, 2007),

elections (for example, Herron and Lewis, 2007; Jessee, 2009), business settings (Ichniowski

et al., 1997), and courts (for example, Martin and Quinn, 2002). There are now a number

of alternative models, estimators, and software that researchers can use to recover a latent

issue or ideological space from voting data. These approaches are often tailored to particular

problems, such as voting in small chambers (Londregan, 2000; Peress, 2009), measuring

dynamics (Martin and Quinn, 2002), or application to very large data sets (Lewis, 2001).

While these models have many features in common, they also differ in some basic assumptions

about exactly how the spatial locations of alternatives are translated into choices. These

assumptions are not simply of technical significance, but imply substantively different notions

of actor behavior which in turn could have consequences for how legislative institutions

function.

In this paper, we explore if these assumptions can be relaxed. That is, rather than

assuming a particular utility function for our actors, can we estimate important features of

the actors’ utility function? It is known that there are limits to how far we can relax our

assumptions and still identify legislators’ ideal points from their roll call votes (Kalandrakis,
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2010). Moreover, it is not obvious that the data to which these estimators are typically

applied is sufficiently rich to pin down those features of utility functions that are identified

(in the econometric sense). We find that, in fact, some important features of voter utility

that have been fixed by assumption in nearly all of the previous literature can be estimated.

However, we also find that while these features have important implications for how actors

translate the recovered issue space into choices over particular pairs of alternatives, they have

relatively little effect on the recovered ideal points.

Nearly all ideal point estimators employ the random utility framework of McFadden

(1973). Accordingly, an actor’s choice between two alternatives (yea and nay) is governed

by a systematic spatial voting component and an independent additive random utility shock

applied to each of the two alternatives. Generally, simple Euclidean spatial preferences are

assumed (Enelow and Hinich, 1984; Hinich and Munger, 1994, 1997). That is, actors are

assumed to be more likely to choose the alternative that is located closer to their ideal policy

than the alternative that is located farther from their ideal policy. The general form of the

random utility function is:

Uj(Oj;X) = F (||Oj −X||) + εj (1)

where X is the actor’s most preferred policy outcome in some d-dimensional policy space,

Oj for j ∈ {y, n} is the location of the policy outcome associated with the (y)ea or (n)ay

alternatives in the same policy space, F is a given monotonically decreasing function, ||.||

denotes Euclidean distance, and εj is an alternative-specific utility shock. Note that actors do

not always choose the closer of the two alternatives because the presence of the non-spatial

shocks which can reverse the preference for one alternative for another that is implied by the

spatial component of the utility function.

As described in greater detail in section 2.2, the (ex ante) probability that the spatial

preferences will be reversed by the idiosyncratic shocks is a function of three factors: the

variability of difference in the utility shocks (εy − εn), the distance between the actor’s ideal
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point (X) and each of the alternative (Oj), and the utility function (F ). Although often

overlooked, the choice of F has important implications for choice behavior. For example, if

F is a concave function (e.g., F : x 7→ −x2), then, holding Oy and On fixed, the likelihood

of an actor voting for the farther away alternative goes to zero as X moves away from both

Oy and On. On the other hand, if F has convex tails (e.g., F : x 7→ exp(−1
2
x2)), then the

probability of choosing the further away alternative goes to 1/2 as X is moved away from

both Oy and On. As we discuss in greater detail in section 2, this difference has implications

for how actors respond to different alternatives.

Typically, the central objective in fitting empirical models of spatial voting is to estimate

the ideal point (X) of each actor.1 In this paper, we focus on the estimation of features of

F . In what follows, we assume that the underlying issue space is unidimensional. As we

will develop further in Section 2, because we are simultaneously estimating features of the

alternatives, the ideal points, and features of F , identification in both the strict econometric

sense and in the sense that the estimation leans heavily on strong distributional assumptions

presents a serious challenge. Indeed, a central object of this research is to probe the limit

of what it is possible to learn about F even conditional on the usual (strong) assumptions

about the distributions of the idiosyncratic shocks.

We begin this exploration in the context of the one-dimensional model not only because

it is the most commonly employed in the literature and because it has been shown to capture

a great deal of the empirical structure of roll call voting matrices in many contexts, but also

because we have the best chance of learning about F under the assumption that there is a

dominant single spatial dimensional. How literally one wishes to take our one dimensional

plus random shocks approximation to what is undoubtably a more complex world is certainly

debatable. We follow nearly every random utility model employed since McFadden (1974) in

assuming that the systematic (this case spatial) utility and the stochastic utility shocks are

additively separable and that the shocks are independent of the systematic utility and have

1In general, the location of each (Oy, On) pair cannot be identified without additional assumptions. However,
ideal point estimators provide estimates of vote-specific parameters that are functions of (Oy, On).
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a simple parametric form (usually normal or logistic). All previous models of ideal point

estimation make these same assumptions and the locations of the ideal point in an Euclidean

space cannot be identified without assuming the existence of and placing structure on the

distribution of utility shocks (see Poole 2005).

When we write about the features of F that we estimate as elements of a legislator’s

spatial utility function, there is obviously an “as if” quality to the description. If we allowed

for dependence between the systematic features of the utility functions and the idiosyncratic

shocks as might arise due to vote buying, the projection of a higher dimensional space onto our

single dimension, and so forth, we could arrive at different conclusions about the shape of F or

about how that shape varied across legislators even though the way in which legislators’ ideal

points are translated into choices (the likelihood of the data) could be little changed. Indeed,

we would very quickly lose identification on the ideal points (as would other ideal point

estimators) if we remove too much of the assumed structure. However, our characterization

of F does allows us to parameterize how the probability of choosing one alternative over

another varies as those alternatives or the legislator’s ideal point are varied. In this sense,

the shape of F in combination with assumptions made about the utility shocks can be

thought of as simply providing a way to approximate the frequency which legislators with

different positions in the one-dimensional space will choose various alternatives. From this

perspective, what we are asking is not what is the shape of F (which depends strongly

on how the idiosyncratic shocks are motivated and defined), but: How do spatial locations

map (probabilistically) into choices? If we summarize legislators by their ideal points in a

single dimension, what function best maps those positions into observed choices? And, does

that choice function vary in important ways across legislators? While we could present our

inquiry entirely in terms of probabilistic choice functions approximated by our utility models,

for convenience, we will describe our problem in terms of estimating the shape of the spatial

utility function (F ) as if legislators have such functions and are truly following our simple

random utility model.
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First, we consider the overall shape of the actor’s spatial utility function, F (||Oj −X||).

We consider a model that is parameterized such that the quadratic utility function used in

estimators such as Jackman’s IDEAL (2004), Martin and Quinn (2002), and many others,

is nested in the Gaussian utility model used in Poole and Rosenthal’s NOMINATE (1985).

This model allows to us investigate whether voting data can be used to discriminate between

these leading assumptions about the shape of spatial utility functions. Perhaps surprisingly,

we find that in voting data from bodies as small as the U.S. Senate it is possible to discrim-

inate between these two utility functions. Based on this model, presented in section 2, we

estimate that legislators’ utility functions are very nearly Gaussian throughout almost the

entire history of the U.S. Congress.

Second, we consider whether F might vary across legislators. In particular, we estimate

a model in which legislator utility has the same basic Gaussian shape (as described below),

but legislators vary in the overall intensity of their spatial preferences. In the econometric

sense, more intense preferences are associated with utility functions with lower variance (i.e.

“skinnier” Gaussian functions). In terms of legislator behavior, actors having more intense

spatial preferences are relatively more likely to select the closer alternative than are actors

with less intense spatial preferences. Consistent with theoretical expectations that policy

extremists are more sensitive to policy outcomes than moderates, we find evidence that

extremist legislators have higher-intensity utility functions than their moderate counterparts.

Our methodology for this project employs a Markov Chain Monte Carlo (MCMC)-based

version of Poole and Rosenthal’s NOMINATE model that allows for easy calculation of auxil-

iary quantities of interest and measures of estimation uncertainty for all estimated quantities.

As noted above, we modify the model to estimate additional parameters that allow for vari-

ation in the shape and distribution of the utility function.

We begin our paper by developing a model that nests Quadratic and Gaussian utility.

We provide a substantive motivation of how the proposed change in the utility function can

affect choice and then proceeds to discuss our methodology and results. Next, we discuss a
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separate model that allows the intensity of each legislator’s utility function to vary. After

presenting a stylized example motivating the importance of the problem, we test the theory

that legislators with extreme preferences (ideal points) will also have more intense preferences

on four recent U.S. Senates and the U.S. Supreme Court. We conclude with a motivating

example and discussion of potential directions for further research.

2 Gaussian vs. Quadratic Utility

2.1 Introduction

What does it mean for utility functions to be Gaussian or quadratic? Figure 1 plots a pair of

corresponding spatial utility functions as assumed by NOMINATE’s Gaussian utility model

and IDEAL’s quadratic utility model.2 The functions correspond to each other in the sense

that they both imply Euclidean preferences with the same ideal point. The curves have been

further harmonized to yield similar utility levels for outcome locations in the neighborhood

of the ideal point. First, note that the two functions are very similar in the region where both

functions are concave. In fact, the quadratic utility function is the first-order exponential

approximation of the Gaussian utility function, a relationship that we exploit in our test of

utility functions.

The key differences between the two distributions are seen in the tails of the plotted

curves. In the tails, the marginal loss in utility is decreasing under Gaussian utility, while

it is increasing at an increasing rate under quadratic utility. Thus, under quadratic utility,

legislators are increasingly more disposed to support the closer alternative the farther away

both the bill and status quo are from their ideal points. In contrast, the convex nature of

the tails in the Gaussian utility function implies that as the bill and status quo are moved

sufficiently far from the legislator’s ideal points, the utility differences between the bill and

status quo are decreasing.

2The utility function employed by NOMINATE is referred to as Gaussian or normal because it has the same
shape as the normal or Gaussian probability density function.
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Figure 1: NOMINATE and IDEAL utility functions. Lines show the deterministic utility
functions assumed by NOMINATE (solid line) and IDEAL (dotted line) for a legislator with
an ideal point of 0.
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Stated more informally, consider the example of a legislator who is voting on a bill au-

thorizing the construction of a number of F-22 fighters. The legislator has an ideal point of

building no new fighters, while the status quo and an amendment propose the construction

of 1,000 and 998 fighters respectively — numbers that are both far from the legislator’s bliss

point. Gaussian utility implies the legislator will be almost indifferent between the bill and

the alternative, while quadratic utility implies that the legislator will perceive an enormous

difference — more than, say, if the amendment were moving from a status quo of 60 fighters

to 58.

As noted in Section 1, if one does not want to take our one-dimensional random utility

model literally, the probabilistic choice function that the combination of F and assumed

independent stochastic choice shocks can be taken as primitive. In terms of the F-22 example,

a legislator with Gaussian preferences wishing to build no new fighters, could have a greater

probability of choosing to build 998 over 1, 000 fighters than she does of choosing to build

60 over 58, whereas for a similar legislator with quadratic preferences, the probability of

choosing 60 over 58 must exceed the probability of choosing 1, 000 over 998. As shown in

Figure 1, in the limit as two alternatives are moved away from legislators ideal point, the

probability of choosing the closer alternative grows monotonically to one under quadratic

preferences, but not under Gaussian preferences. Under Gaussian preferences, in the limit

as the alternatives move away from a legislator’s ideal point, her probability of choosing

the closer alternative goes to one-half. Whether the non-monotonicity shown in Figure 1

is manifest over the range of alternatives available to the legislators or not, it is the voting

behavior of legislators located far from the alternatives that we expect to be most affected

by the choice of F .

In developing the NOMINATE model of ideal point estimation, Poole and Rosenthal

chose the Gaussian deterministic utility function for substantive reasons. Their belief was

“that political actors (were) relatively insensitive to small changes in distance from their

ideal points; at somewhat greater distances, utility should change sharply; finally, at very
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great distances, changes in distance should have little effect on utility” (Poole and Rosenthal,

1983). Later work in psychology provided independent support for the normal utility model

(Poole, 2005). In particular, the psychological experiments of Shepard, Nosofsky, and Ennis

(Shepard, 1986; Nosofsky, 1986; Ennis, 1988) that examined how people judged similarity

between stimuli such as light and sound intensity, revealed that these judgments appeared

to use an exponential response function (Shepard, 1987). More specifically, let A represent a

distance measure between two different stimuli, where A = 0 if the two stimuli are identical.

Shepard found that given two competing stimuli with distance A, individuals tend to report

the distance e−kA instead, where k is a scaling constant. When perceptual error is added to

the Shepard model, the expected value of this response function becomes Gaussian — that

is e−kA
2
.

The Shepard–Nosofsky–Ennis model thus implies normally-distributed utility functions in

spatial models of voting, because the concept of preference can be reduced to the psychological

notion of comparing similarities. In spatial models of voting, legislators with ideal point Xi

use that standard to judge other legislative stimuli, Oj. The distances between the ideal point

and the stimuli are then perceived as e−kA
2

= e−k(Xi−Oj)2 , where A is the distance measure

between the ideal point and stimulus. Spatial models of voting can therefore be regarded as

being consistent with the Shepard–Nosofsky–Ennis similarity model.

In this experimental work that lends empirical support to the exponential response func-

tion, the characteristics of the stimuli are observable and fixed by the experimenter. In our

setting, the characteristics of the alternatives (the stimuli) are unknown latent quantities to

be estimated. Because both the nature of the response function (as parameterized in our

model by F ) and values assigned by the stimuli must be inferred, there is considerably more

freedom in our setting to fit any response function to the observed data by adjusting the

values of alternatives being voted upon (as well as the locations of a legislators’ ideal points).

So much so, that one might suppose that there would be very little ability to empirically

discriminate between a model which fixed F to be Gaussian and one which fixed F to be
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quadratic. However, as we show in Section 3, it is possible to discriminate between these two

alternative models in typical empirical settings.

2.2 Estimation

In this section, we begin with an overview of the quadratic and Gaussian choice utility models

in one dimension. We then describe our model, which estimates an additional parameter

α that allows convex combinations of the two utility models. Let p denote the number of

legislators (i = 1, ..., p), and q denote the number of roll call votes (j = 1, ..., q), and l = {y, n}

represent the two possible choices on each vote, yea and nay. Let legislator i’s ideal point

be represented by Xi and let Ojy and Ojn represent the yea and nay locations of roll call j.

Then in the quadratic utility model, the utility that legislator i derives from voting yea on

roll call j is:

UQuad
ijy = −(Xi −Ojy)

2 + εijy

While the utility of voting nay is:

UQuad
ijn = −(Xi −Ojn)2 + εijn

In the Gaussian utility model, given the signal to noise parameter β and weight w (which

is fixed to w=0.5), the corresponding yea and nay utilities for legislator i on vote j are:

UNorm
ijy = βexp{−1

2
w2(Xi −Ojy)

2}+ εijy

UNorm
ijn = βexp{−1

2
w2(Xi −Ojn)2}+ εijn

Note that we can take the first order exponential expansion of the utility from a yea vote

under Gaussian utility as:
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UNorm
ijy = β

∞∑
i=0

(−1
2
w2(Xi −Ojy)

2)i

i!
+ εijy

Hence, the quadratic utility function is a first order approximation of the Gaussian utility

function.

Under both models, the difference between the two errors is assumed to have a stan-

dard normal distribution, that is, εijn − εijy ∼ N(0, 1). This leads to the standard probit

formulation of the probability that legislator i votes yea on the jth roll call as:

Prijy = Pr(Uijy > Uijn) = Pr(εijn − εijy < uijy − uijn) = Φ[uijy − uijn]

where uijy and uijn are the deterministic components of Uijy and Uijn respectively. Cor-

respondingly, the probability that legislator i votes Nay on the jth roll call is Prijn =

Φ[uijn − uijy] = 1− Prijy.

The mixture model we estimate is similar to the two models presented here, with the

exception of an additional α parameter to be estimated that is permitted to vary from 0 to 1.

We take the exponential expansion of the Gaussian utility function, separate the first order

approximation from the component, and estimate the following:

UMix
ijy = β

1∑
i=0

(−1
2
w2(Xi −Ojy)

2)i

i!
+ αβ

∞∑
i=2

(−1
2
w2(Xi −Ojy)

2)i

i!
+ εijy

UMix
ijn = β

1∑
i=0

(−1
2
w2(Xi −Ojn)2)i

i!
+ αβ

∞∑
i=2

(−1
2
w2(Xi −Ojn)2)i

i!
+ εijn

Note the close relationship between the utilities from the mixture model presented here

compared to the quadratic and Gaussian utilities presented earlier. When α = 1, the util-

ity function of the mixture model is identical to the Gaussian model. When α = 0, the

utility function of the mixture model is identical to the quadratic model with the exception

of a constant, which disappears in the vote choice probability function when the Yea and
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Nay utilities are subtracted from one another. Hence, estimation of α allows for a convex

combination of quadratic and Gaussian utilities to be used in scaling the data, and we set

the prior accordingly as p(α) ∼ Uniform(0, 1). α close to zero or one can be interpreted as

evidence supporting the quadratic or Gaussian utility functions. Intermediate values of α

imply a hybrid choice function in which properties of both models are combined. Note that

our prior rules out values of α outside of the unit interval. We do this because we are seeking

to discriminate between the two leading models and thus treat those models as polar. We

also do this because if we allow α outside of the unit interval, we are not imposing the more

fundamental restriction that utility is decreasing in the distance between the legislator and

the alternative.3

Given the p x q matrix of observed votes V , Bayesian inference for the legislators’ ideal

points, bill parameters, and auxiliary parameters proceeds by simulating the posterior density

given by

p(α, β,X,O|V ) ∝ p(V |α, β,X,O)p(α, β,X,O).

We choose a diffuse prior density, p(α, β,X,O) = p(α)p(β)p(x)p(O), that is typical of

Bayesian ideal point models. In particular, we assumed that the ideal point and roll call

parameters (Xi for all i, and Okj for k ∈ {y, n} and all j) are distributed normally and

independently with mean 0. The corresponding variances are parameter specific (i.e., σ2
k

for k ∈ {α, β,X,O}) and are given uninformative χ−2 priors. The prior distribution of α is

taken to be uniform on the [0, 1] interval and the prior distribution of β is given and improper

uniform prior.4

The likelihood is given by:

3We have also estimated models which only Gaussian or quadratic utility is possible. That is models in which
the prior over α is Bernoulli with it parameter, π, indicating the probability that the data are generated
by a Gaussian or quadratic model. The conclusions drawn from those estimation are analogous to those
presented below.

4χ−2 distributions each have N − 1 degrees of freedom, where N is the number of legislators for p(X) and
the number of bills for p(O). Computer code for drawing simulated samples from the posterior distributions
of all the models described is available by request.
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p(V |α, β,X,O) ∝
p∏
i=1

q∏
j=1

2∏
l=1

P
Cijl

ijl

where Cijl = 1 if choice l is the actual choice of legislator i on roll call j and is zero otherwise.

Because the priors are diffuse and no restrictions are placed on any of ideal points or the

locations of any of the alternatives, we are following Shapiro (1986) in estimating an “over-

parameterized” model—one in which the underlying scale is not fixed in advance. We use

Gibbs sampling to draw from the posterior and then post-process to the results to establish

an (arbitrary) scale of our estimated issue spaces (see Jackman (2008a) and Hoff et al. (2002)

for discussions of this general approach to establishing the scale of a latent space in similar

settings). Note that because the value of α is not a function of the choice of scale, the

posterior draws of α, the key quantity of interest are not affected by the post processing of

the ideal points and the bill and status quo locations.

2.3 Results

In this section, we present three sets of empirical results. We begin with Monte Carlo tests

that validate our estimator’s ability to distinguish between Gaussian and quadratic forms

of utility. These results suggest that the estimator is able to distinguish between different

utility functions as expected. We apply our estimator to the 109th Senate, and find strong

evidence in support of a Gaussian utility function. We then proceed to apply the estimator

to all U.S. Congresses. In the vast majority of cases, we continue to find strong evidence of

a Gaussian utility function consistent with the results of the 109th Senate.

Our primary means of validating the estimator is through the use of Monte Carlo sim-

ulation. We generated two separate roll call matrices with 100 legislators and 500 roll calls

using Gaussian and quadratic utility functions.5 Recall that α values of 0 are consistent with

quadratic utility while α values of 1 are consistent with Gaussian utility. We then applied

the mixture estimator to the two data sets over 60,000 iterations, discarding the first 10,000

5For these simulations we set Oy ∼ U(0.3, 1), On ∼ U(−1,−0.3), and X ∼ U(−1, 1).
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as a burn-in and thinning every 10th iteration. Posterior distributions from both data sets

are shown in Figure 2. When choice data generated under the assumption of Gaussian utility

is scaled, α had a posterior mean of 0.985 and a posterior standard deviation of 0.014. These

results are also fully consistent with the theoretical expectations of the model. Under the

quadratically generated Monte Carlo, α had a posterior mean of 0.054 and a posterior stan-

dard deviation of 0.043. These results are fully consistent with the theoretical expectations of

the model, providing evidence that our estimator is able to distinguish data from two similar

but distinct utility functions.6

We then applied the estimator to the 109th Senate (2005-07), with some additional

changes designed to bias our results toward the quadratic utility model as favorably as pos-

sible. Our concern here is ensuring that the results estimated by our Markov Chain have

reached convergence. We began our estimation by constraining α = 0 throughout the esti-

mation and generating posterior samples of both legislator coordinates and bill parameters

following convergence. We then take these posterior means as the start values of our esti-

mation, and start α at 0. The idea here is to start the estimation at the parameters that

are most favorable to obtaining low values of α; if the α parameter subsequently moves to

higher levels, then we can be reasonably sure that the global maximum truly does converge

at higher levels of α.

Our results for the 109th Senate are summarized in the posterior density and trace plots of

α in Figure 3. The posterior plot shown for the 109th Senate is very similar to the plot shown

for the Gaussian utility Monte Carlo, with a posterior mean of 0.996 and a posterior standard

deviation of 0.004 for α. The traceplot suggests rapid convergence to high values of α, despite

the quadratic utility–biased starting values used to begin the simulation. These high values

6Although our estimates are all conducted in one dimension, a possible concern is the prevalence of the
normal utility function that we find in this paper may be due to the fact that it allows one to approximate
a higher–dimensional utility function by a lower–dimensional one. To test for this possibility, we conduct a
second variant of this Monte Carlo test in which we generate two-dimensional voting data using quadratic
utility. In this model α had a posterior mean of 0.038 and a posterior standard deviation of 0.096. Thus,
the prominence of normal utility that we show later in Figure 4 for higher dimensional legislatures such as
the 90th House and Senate cannot be explained by higher dimensionality alone.
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Figure 2: Posterior Distributions of the Alpha Parameter. Distributions are estimated Al-
pha parameters from two Monte Carlo data sets of 100 legislators and 500 roll calls. The
distribution to the right is estimated from data generated from NOMINATE utility, while the
distribution to the left is estimated from data generated using quadratic utility.
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Figure 3: Posterior and trace plot of α: 109th Senate. The posterior plot is consistent with
Gaussian utility posterior from Monte Carlo simulation. Despite using start values biased
towards low values of alpha, the traceplot suggests steady state convergence at much higher
levels. α = 1 is consistent with Gaussian utility while α = 0 is consistent with quadratic
utility.

persist throughout almost all of the samples of α drawn. It should be emphasized that while

the results from our mixture model suggest that choice probabilities are maximized using

a Gaussian utility model, they do not imply that the ideal points recovered via quadratic

utility are “wrong”. The ideal points recovered from the quadratic model and mixture model

do correlate highly, at 0.950, with those from the mixture model. The correlation for the

Gaussian model with the mixture model is slightly higher, at 0.958, suggesting that the

pattern of errors is more consistent with Gaussian than with quadratic utility.

These results naturally lead to the question of how α has varied across legislatures over

time and whether the results of the 109th Senate are exceptional or common across legisla-

tures. We attempt to answer this question by applying the mixture estimator to every U.S.

Senate and House roll call matrix and obtaining estimates of their α parameters.7 Figure

7For these estimates, 6,000 iterations were used with a burn in of 1,000 iterations. Starting values for ideal
points were drawn U(-1,1), while bill locations were drawn U(-0.7,0.7). For all estimates, α was initialized
at a start value of 0.5.
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4 summarizes these results, plotting the posterior means and empirical 95 per cent credible

intervals of α for the U.S. House and Senate. In general, these results suggest that high values

of α, consistent with Gaussian utility, are pervasive throughout most U.S. Congresses. The

major exception appears to be the early Congresses — we hypothesize that this is mainly due

to the limited amount of information available for those Congresses due to the lower num-

bers of legislators and bills. The hypothesis draws support from the observation that normal

utility is strongly supported, starting with the 20th House, for the House of Representatives

which is typically at least four times the size of the Senate. We plot the posterior densities

of two early Congresses — the 5th Senate (1797-1799) and the 6th House (1799-1801) — in

Figure 5. These densities can be distributed approximately normal, as in the case of the 6th

House, but they can also be skewed, as in the case of the 5th Senate. In the House, which

has many more legislators than the Senate, the Gaussian model is always strongly supported

after the 20th Congress (1827-1829). A similar pattern for the Senate kicks in only at the

80th Congress (1947-1949). The precision of our estimates also appears to be attributable

to the quantity of data used in each estimate. Table 1 shows the results of a simple OLS

regression where the dependent variable is the length of the 95% credible intervals for each

Congress and the independent variables are the number of legislators, the number of roll

calls, and their interaction. In both cases, precision of the estimates increases with both the

number of legislators and the number of votes.

While these results suggest that it can be difficult to distinguish between quadratic and

Gaussian utilities in smaller legislatures, judicial settings such as courts may provide a sub-

stantively important venue to further evaluate assumptions about utility functions. We

applied the mixture estimator to U.S. Supreme Court decisions from 1953-2008, a roll call

matrix that includes 31 different justices and 4,333 decisions.8 Our results for the Supreme

Court are consistent with Gaussian utility, with a posterior mean of 0.998 for α and a pos-

8There are 7,285 total decisions, but all unanimous decisions are discarded before estimates are taken because
they do not contribute any useful metric information.
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Figure 4: Estimates of α over time: U.S. House and Senate. Points represent the posterior
mean of the α draws for each Congress. The lines show the range of the empirical 95 per cent
credible intervals of α. α = 1 is consistent with Gaussian utility while α = 0 is consistent
with quadratic utility.
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Figure 5: Posterior distribution α: 6th House and 5th Senate. The 6th House had 112
legislators voting on 95 bills, leading to a mean α of 0.607 and a standard deviation of 0.170.
The 5th Senate had 43 legislators voting on 194 bills, leading to a mean α of 0.215 and a
standard deviation of 0.166.
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House Senate
Number of Legislators -0.135 -1.017

(0.015) (0.134)
Number of Votes -0.102 -0.125

(0.015) (0.034)
Votes x Legislators 0.00024 0.00118

(0.000038) (0.00038)
Intercept 56.8 112

(5.51) (10.6)

R2 0.48 0.53
N 109 109

Table 1: Predicting 95% credible interval length for α: Standard Errors in Parenthesis.
Confidence intervals correspond to those plotted earlier in Figure 4, multiplied by 100.

terior standard deviation of 0.002.9

Finally, we attempted to determine whether our estimates of a Gaussian α is unique to

the U.S. legislature. Given the psychological foundations of the normal utility function in

the Shepard–Ennis–Nosofsky stimulus response model, we hypothesize normal utility is likely

prevalent in choice data in general. To test this hypothesis, we conducted the same estimation

for four different sources of choice data: the U.S. Supreme Court, the French Fourth Republic,

the European Parliament, and the California Legislature. Our results, summarized in Table

2, are consistent with our hypothesis that choice data outside the U.S. legislative context

also appears to be fit well with normal utility functions.

3 Extremists and Intensity

3.1 What does Intensity Mean?

The mixture model presented in the previous section is predominantly a story of choices at

the extremes — that is, how likely are legislators to select the closer alternative when both

9In an earlier draft of this paper, we conducted this estimation with only U.S. Supreme Court Data from
1994-97. With only nine justices and 213 votes, the mixture estimator did a poor job of distinguishing
between quadratic and Gaussian utilities. This new result suggests that there is a lower bound to the size
of the roll call matrix needed before reasonable estimates of α can be estimated
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Source Posterior mean of α σα
U.S. Supreme Court, 1953-2008 0.998 0.002
European Parliament, 1979-84 0.986 0.001
European Parliament, 1994-99 1.000 0.000

France First Legislature, 1946-51 1.000 0.000
France Second Legislature, 1951-56 1.000 0.000
France Third Legislature, 1956-58 0.999 0.001
California State Assembly, 1993-94 0.998 0.002
California State Assembly, 1997-98 0.998 0.002
California State Assembly, 2001-02 0.999 0.001
California State Assembly, 2005-06 0.999 0.001

California State Senate, 1993-94 1.000 0.000
California State Senate, 1997-98 1.000 0.000
California State Senate, 2001-02 1.000 0.000
California State Senate, 2005-06 1.000 0.000

Table 2: Estimates of α outside the U.S. Congress. The results here suggest values of α
that are consistent with Gaussian utility in a wide variety of settings. Results shown to three
significant digits.

the bill and the status quo are situated far from their ideal point? Separate but related to

this is the question of whether extremists have utility functions that are distinctly different

from those of moderates. In the context of the Gaussian utility model, this suggests that the

weight parameter w is not constant as assumed by NOMINATE, but instead varies across

legislators. More intense preferences are associated with utility functions with lower variance

and larger weight parameters. In particular, we are interested in the possibility that the

deterministic component of the utility functions of extremists exhibit greater intensity than

that of moderates.

The hypothesis that the choice behavior of extremists may differ systematically from that

of moderates is perhaps most forcefully developed in social psychology in the social judgment

theory of Sherif and Hovland (1961) and Keisler et al. (1969). Under this theory, behavior is

related to “involvements” — that is, more politically involved people may have different utility

functions. Moreover, operationally, Sherif et al. (1965) define involvement as membership

in a group with a position on an issue. They postulate that individuals will partition the

dimension into the three latitudes of acceptance, rejection, and non-commitment. The theory
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furthermore claims that involvement increases the latitude of rejection. To translate to our

model, we hypothesize that extremists will have more sharply peaked utility functions than

moderates — that is, a higher individual weight parameter wi. A series of empirical studies

(Sherif, 1952; Hovland et al., 1957; Sherif et al., 1965) all developed the finding that “those

with extreme positions use broader categories for rejection than for acceptance and that their

category for rejection is wider than the rejection category of more moderate subjects.”

To observe the substantive impact of such a difference, consider a situation where Jus-

tices Kennedy and Scalia are deciding between voting with (Oy) and dissenting (On) from

a majority opinion, as depicted in Figure 6. The locations of the majority and dissenting

opinions are set at 0.4 and 0.6 respectively. The deterministic components of Kennedy and

Scalia’s Gaussian utility functions are depicted in dotted lines, centered on their respective

ideal points of 0.2 and 0.8. In the case of the utilities depicted with dotted lines, the standard

deviation of the Gaussian utility function for both Kennedy and Scalia is set at 0.3. We also

show the utility function of a counterfactual “high-intensity” Scalia on a solid line, whose

ideal point is still located at 0.8, but has a utility function with noticeably smaller variance.

In the absence of stochastic utility, each justice joins the opinion closest to his ideal

point — Kennedy is predicted to join in the majority, while both the low and high intensity

Scalias are predicted to join the dissenting opinion. But note that in the presence of random

shocks to utility, the justices have different propensities to cast votes that do not conform

to this expectation. Both Kennedy and the low-intensity Scalia have the same probability

of voting for the alternative that is further from their ideal point, as their deterministic

utility differences between the majority opinion and dissent are identical. However, the high-

intensity Scalia obtains much more utility from choosing to dissent than the low-intensity

Scalia. This in turn suggests that the high-intensity Scalia is much less likely to vote for the

alternative that is further from their ideal point than either Kennedy or the low-intensity

Scalia.
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Figure 6: Utility of Functions of Kennedy and Two Scalias. Kennedy’s ideal point is set
at 0.2, while both Scalias’ ideal points are set at 0.8. While both the low and high-variance
Scalias prefer to dissent, the low-variance Scalia experiences a much higher utility difference
between voting with the majority and dissenting, and is thus much less likely to err.
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3.2 Estimation and Results

The intensity model we estimate to determine if extremists have more sharply-peaked utility

functions than moderates is similar to the Gaussian utility choice model presented earlier.

Again, let p denote the number of legislators (i = 1, ..., p), and q denote the number of roll

call votes (j = 1, ..., q), and l represent the two possible choice on each vote, yea and nay.

Let legislator i’s ideal point be represented by Xi and let Ojy and Ojn represent the yea and

nay locations of bill j. Then recall from the Gaussian utility model, given the signal to noise

parameter β and weight w, the corresponding yea and nay utilities for legislator i on vote j

were:

UNorm
ijy = βexp{−1

2
w2(Xi −Ojy)

2}+ εijy

UNorm
ijn = βexp{−1

2
w2(Xi −Ojn)2}+ εijn

Rather than using a global weight parameter w, the intensity model allows each legislator’s

weight parameter wi to be estimated separately, resulting in the new utility functions:

U Intensity
ijy = βexp{−1

2
w2
i (Xi −Ojy)

2}+ εijy

U Intensity
ijn = βexp{−1

2
w2
i (Xi −Ojn)2}+ εijn

This again leads to the standard probit formulation of the probability that legislator i

votes Yea on the jth roll call as:

Prijy = Pr(Uijy > Uijn) = Pr(εijn − εijy < uijy − uijn) = Φ[uIntensityijy − uIntensityijn ]
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where uijy and uijn are the deterministic components of Uijy and Uijn respectively. Cor-

respondingly, the probability that legislator i votes Nay on the jth roll call is Prijn =

Φ[uijn − uijy] = 1− Prijy.

The choice probability function nicely illustrates the identification issues that we high-

lighted in section in the introduction. Note that we could also allow variation in the impor-

tance of the idiosyncratic shocks across members rather that in variation in the importance

of the spatial utility (what we are referring to as intensity). In either case, we would make

choice more a function of spatial location for some members and less for others. Indeed, in the

quadratic utility models increasing w and decreasing the variance of the shocks are isomor-

phic. In the Gaussian model increasing the w and decreasing the variance of the idiosyncratic

shocks are not isomorphic, but they are similar. Thus, we can only say that spatial utility is

more important because we are assuming that idiosyncratic shocks are similarly important

across members. Of course, all utility calculations are relative and so this is not a surprising

situation. However, if we focus on the probabilistic choice function our inability to separate

variation in behavior across legislators that is due to spatial or idiosyncratic considerations

is of little consequence.

We use the same diffuse priors on the legislator and vote parameters described in Section

2. Given the p x q matrix of observed votes V, Bayesian inference for the legislators’ ideal

points, bill parameters, and auxiliary parameters proceeds by simulating the posterior density

given by:

p(α, β, w,X,O|V ) ∝ p(V |α, β, w,X,O)p(α, β, w,X,O)

where the likelihood and priors are the same as those shown in the previous model.

Our model is closely related to a “robust” ideal point estimator proposed by Bafumi

et al. (2005), and later extended by Lauderdale (2010). Both models examine the extent to

which individual legislators vote on the basis of the dominant spatial preference dimensions.

However, our work differs in two significant ways. First, our model builds on work from the

preceding section and is based on the normal utility models, whereas the earlier papers ex-
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clusively assume quadratic utility. Secondly, our substantive focus examines the relationship

between intensity and extremism, an issue left unexplored in the other papers.

Similar to our earlier model, our primary means of validating the estimator is through

the use of Monte Carlo simulation. In this instance, we generate a roll call matrix with 100

legislators and 1000 roll calls using the Gaussian utility function.10 However, in contrast to

our earlier Monte Carlo, we vary the weights for each legislator, drawing true weights from

the distribution w ∼ U(0.5, 1.5). Our estimated ideal points correlate with the true ideal

points at r = 0.999, and our estimated weights correlate with the true weights at r = 0.917 —

providing evidence that our estimator is able to recover the parameters of interest successfully.

We note that weights in our Monte Carlo simulations are drawn independently from ideal

points. Figure 7 shows a plot of recovered ideal points against the recovered weights. In

both the true data and our estimates our lowess smoother detects no systematic relationship

between the extremism of a legislator and the intensity of their preferences. This is impor-

tant for our model in demonstrating that extremism and intensity are conceptually different

concepts that can be separately identified in estimation. More informally, it confirms the

fact that our model allows for four types of legislators to be estimated: intense and mod-

erate legislators, intense and extreme legislators, noisy and moderate legislators, and noisy

and extreme legislators. Thus, our estimator will be able to detect a wide range of possible

relationships, both linear and non-linear, between ideological positioning and intensity.

We applied the intensity estimator separately to the 106th to 109th Senates (1999-2007),

with the results of our estimation shown in Figure 11. On the X-axis, we plot the Z-

transformed ideal points of the senators, calculated as the posterior means of Xi. The

posterior mean weight parameter wi is plotted on the Y-axis, and an 80 per cent confidence

band for each legislator’s weight is displayed. A lowess smoother is then applied to the points

on each graph in an effort to detect nonlinear patterns in the distribution of weights.

Building on the social judgement theory of Sherif and Hovland (1961), we hypothesized

10For these simulations we set Oy ∼ U(−1.1, 1.1), On ∼ U(−1.1, 1.1), and X ∼ U(−1, 1).
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Figure 7: Ideal points vs. Estimated Weights: Monte Carlo Analysis. Lines reflect the
80 per cent confidence bands on each simulated legislator’s estimated weight. Recovered ideal
points correlate with true ideal points at r = 0.999, while recovered weights correlate with true
weights at r = 0.917. Lowess smoother shows no relationship between weights and extremism,
which are simulated to be independent.
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w=0.4 w=0.92
x=-1.31 -168.8 -245.80
x=-3.23 -159.5 -248.5

Table 3: Log-Likelihood for Feingold (D-WI), 109th Senate. Feingold’s estimated ideal point
of x=-3.23 and weight of w=0.4 are notable outliers. We compute the log-likelihood for the
same votes using Feingold and Harkin’s (D-IA) ideal point and weight, and find that the
difference in log-likelihood is largely the result of the difference in weights.

that extremists would have more sharply peaked utility functions than moderates — that is,

a higher individual weight parameter wi. In all four cases we examined, the lowess-smoothed

weights generally appear consistent with this hypothesis, though there appears to be some

deviation from this trend at the conservative end of the 109th Senate.11

In three of the four cases shown above, Russ Feingold (D–WI) appears as a notable

outlier, both in terms of the extremity of his estimated ideal point and weight parameter.

This is largely due to Feingold’s status in the Senate as an occasional ideological maverick

who sometimes votes with Republicans against everyone else in his party. To understand the

impact of this behavior on our estimates, we compare the choice probabilities for Feingold

in the 109th Senate to that of the second most liberal senator, Tom Harkin (D-IA). In

drawing this comparison, we are attempting to understand why Feingold’s estimates deviate

so substantially from those of Harkin, despite being relatively similar in their ideological rank

ordering.

In drawing this comparison, note that both Feingold’s weight and ideal point estimate

differ considerably from that of Harkin. How do differences in each of these parameters

between Feingold and Harkin affect the fit of the model? We examine this issue by testing

the counterfactual of how Feingold’s voting record would fit the model if his weight and ideal

point parameters looked more similar to that of Harkin. Table 3 shows the log-likelihood for

Feingold for four combinations of weights and ideal points — specifically, the combinations of

11Although they are not shown here, we repeated this test for the 100-105th US Senate (1987-1999) as well.
Results in those tests are also consistent with the hypothesis that extremists exhibit more highly-peaked
utility functions.
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Figure 8: Ideal points vs. Estimated Weights: 106th to 109th Senate. Lines reflect the 80
per cent confidence bands on each Senator’s estimated weight. The dashed line is a lowess
smoother of the points and provides evidence that extremists have larger weight parameters
than their moderate counterparts. The circled estimate corresponds to Russ Feingold (D-WI)
while the estimate enclosed in the diamond corresponds to Tom Harkin (D-IA). In three of
the four plots shown here, Feingold is a notable outlier.
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Figure 9: Log-Likelihood of Nay vote by Feingold (D–WI), H.R. 6111 concurrence with House.
The left panel shows the log-likelihood of a Nay vote for different values of w with x = −3.23,
while the right panel shows the log-likelihood of a Nay vote for different values of x with
w = 0.92. The diamond indicates the log-likelihood for Feingold, while the point indicated
by the circle indicates what Feingold’s log-likelihood would have been if his weight/location
was identical to that of Tom Harkin (D–IA), the second most liberal senator in the 109th
Senate. The triangle and square on the right panel show the estimated yea and nay locations,
respectively.

weights and ideal points that we estimate separately for Feingold and Harkin. The lower left

cell shows Feingold’s log-likelihood under his estimated ideal point and weight of x = −3.23

and w = 0.4. The other cells show new likelihood values for combinations of weights and

ideal points using Harkin’s estimates. Moving Feingold’s ideal point to Harkin’s position while

maintaining the same weight (i.e. the top left cell) results in decrease in the log-likelihood of

approximately 9 points. However, shifting Feingold’s weight to Harkin’s weight while holding

constant Feingold’s ideal point (i.e. the bottom right cell) results in a significantly worse fit.

This shows that the change in weight is overwhelmingly the dominant factor explaining the

discrepancy in fit.

What sort of voting behavior can account for the large differences in fit for Feingold’s

voting record when using Feingold’s weight and ideal point estimates, compared to those of

Harkin? Stated differently, what sorts of votes drive the difference between the bottom left
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and top right corner that we observe in Table 3? Earlier, we characterized Feingold as an

occasional ideological maverick who sometimes votes with Republicans against everyone else

in his party. As an illustrative example, we demonstrate how one example of such maverick

behavior from the 109th Senate can have an enormous effect on Feingold’s weight and ideal

point estimates. Here, we consider a Senate motion to concur in the House Amendment to

the Senate Amendment to H.R 6111, a bill that amends the Internal Revenue Code of 1986.

The motion passed with a vote of 79-9, with all Democrats other than Feingold voting for

the bill; Feingold joined eight Republican senators in voting against it. For this bill, we again

separately consider how shifts in weight and ideal point affect the probability of the vote.

The left panel of Figure 9 shows the log-likelihood of a Nay vote as Feingold’s weight pa-

rameter changes, holding his ideal point fixed at his estimated value. The diamond indicates

Feingold’s log-likelihood for this vote, while the point indicated by the cirlce indicates what

Feingold’s log-likelihood would be for this vote if his weight was shifted to that of Harkin.

We observe that a shift from Harkin’s weight of 0.92 to Feingold’s estimated weight of 0.40

increases the log-likelihood by 4.08. Stated differently, this implies that the lower weight

makes the observed maverick vote 59 times more likely to occur.12

On the figure to the right, we conduct a similar test for the same vote, plotting the

same log-likelihood of a Nay vote as Feingold’s ideal point changes, while holding his weight

fixed at his estimated value. Similar to before, the diamond and circle indicate Feingold and

Harkin’s estimated ideal point, respectively. This graphic suggests that as Feingold’s ideal

point shifts from Harkin’s ideal point of -1.31 to Feingold’s estimated ideal point of -3.23, the

log-likelihood associated with the vote increases by 1.15, implying that the Nay vote is 3.15

times more likely to occur. In short, reductions in weight and ideal point both substantially

improve the fit for Feingold’s maverick votes.13

12It should be noted that this is not the most extreme instance of this phenomenon — on one such vote,
the change in log-likelihood increased the log-likelihood by 11.77, making the maverick vote 128,888 times
more likely to happen.

13We also examine this behavior for two other presumed Congressional mavericks. John McCain (R-AZ)
served in all four legislatures shown here, and his estimated spatial location is largely unaffected by the
inclusion of a weight parameter. In contrast, William Proxmire (D-WI) exhibits similar characteristics

30



−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Location

W
ei

gh
t

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Estimated Weight

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Frankfurter

Black

Stewart

Whittaker

Stevens

Harlan

O'Connor

White

Kennedy

Blackmun

Powell

Reed

Burton

Jackson

Breyer

Clark

Souter

Ginsburg

Douglas

Warren

Roberts

Alito

Burger

Scalia

Rehnquist

Thomas

Brennan

Marshall

Fortas

Minton

Goldberg

Figure 10: Ideal points vs. Estimated Weights: U.S. Supreme Court 1953-2008. The
left panel shows estimated weights for justices by ideal point, with lines reflecting 80 per
cent confidence bands on each estimated weight. The lowess-smoothed line is consistent with
earlier results. Weights for each justice are individually identified and sorted in the dotchart
on the right panel, also with 80 per cent confidence intervals attached.

Despite its smaller size, we repeat this analysis for the 1953-2008 U.S. Supreme Court, as

shown in Figure 10. Our results for the court suggest a pattern similar to the Senate, with

the lowess-smoothed weights suggesting that extremists have more sharply peaked utility

functions than moderates. Additionally, we provide a dotchart of the weights that individu-

ally identifies each justice separately. The dotchart reveals no obvious pattern in the weight

estimates, though a significant number of justices across the ideological spectrum have low

estimated weights.

4 Application: Agenda Setting with probabilistic spatial voting

over one dimension

Because most theoretical analysis of legislative bargaining and outcomes from within the

spatial voting framework assumes simple deterministic Euclidean preferences, it is not clear

to Feingold in the 100th Senate — an extreme position (-2.297) coupled with an extremely low weight
(w=0.214). We thank a reviewer for suggesting this possibility.
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that our expectations about legislative outcomes or behavior depends in any way on the form

of the legislators’ utility functions. Indeed, because the ideal point estimates generated under

various assumptions about the form of legislators’ utility functions are generally similar,

if legislative outcomes and bargaining only depend upon legislators’ ideal points then the

broader theoretical importance of the preceding discussion would be rather limited.

To demonstrate how the shape of legislators’ spatial utility functions (or corresponding

probabilistic choice functions) might affect predictions of about legislative behavior and out-

comes, we consider a probabilistic voting version of a commonly employed modeling frame-

work for analyzing legislative outcomes (see, for example, Cox and McCubbins (1993, 2005)

or Krehbiel (1998)). In this framework, legislators have Euclidean preferences over a single

spatial dimension. We also assume a one-dimensional policy space. However, we assume that

in additional to spatial considerations, legislators have non-spatial utility components of the

sort described in Section 2.

Ideal point estimates produced by NOMINATE have been used to estimate important

quantities such as “blackout intervals” that arise from this modeling framework (i.e. ?Jenkins

and Monroe (2012)). However, those estimates are based on the assumption that legislators’

preferences are fully determined by their spatial location. By extending the framework to

include the non-spatial utility components that are a hallmark of empirical models of spatial

voting, we are able to characterize likely legislative outcomes in a way that is fully consistent

with the empirical models of legislator choice (like NOMINATE).

Because of non-spatial considerations, our legislators do not always vote for the closer

alternative. We assume that the proposer of any particular bill is aware not only of the

location of the status quo policy and the locations of each legislator’s ideal point, but also

knows the non-spatial utility values that legislators associate with the status quo and with

the proposal that she might offer. While the proposer can observe the non-spatial utility

values, she cannot affect them. She can only choose the spatial location of the proposal.

In our model voting is probabilistic ex ante. From the standpoint of an outside observer
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(or an actor prior the revelation of the idiosyncratic utility components), the choice of one

alternative other another is not fully determined by the legislator’s ideal point and the loca-

tion of the two alternatives under consideration. As in the empirical models of voting that

we considered in the preceding sections, ex ante the probability with which one alternative

is selected over another is determined by the shape of the spatial utility function and the

distribution of the utility shocks.

The model proceeds in the usual way with the proposer selecting the bill (if any) that

most improves upon the status quo subject to the constraint that it is preferred to the status

quo by a majority of the legislators and will not be vetoed by the executive. For simplicity, we

omit institutions such as the filibuster, a bicameral legislator, or a veto override. This simple

setting is sufficient to demonstrate how the distribution of legislative outcomes depends upon

how spatial and non-spatial considerations are combined or, more specifically, the form of

the random utility functions (described in Section 2). As we will demonstrates shortly, the

distribution of legislative proposals and outcomes generated by legislators with Gaussian

preferences and legislators with quadratic preferences differ.

Because our chief objective in this article is to probe the limits of how much can be

learned about the shape of actors’ utility functions, we leave for future work to consider all

of the theoretical implications that differently shaped utility functions might imply for the

distribution of legislative outcomes or other quantities of interest. Here we will provide a

simple motivating example of one such difference.

Consider an N = 101 member legislature in which members ideal points are spaced evenly

between -1 and 1 implying a floor median of xm = 0. Suppose a leader with proposal power

is located at xl = −0.5, and is faced with a legislative status quo at s = 0 and a president

with veto power at xp = 0.5. In the usual world of Euclidean preferences without non-spatial

utility considerations, there is no legislative proposal by the party leader that improves upon

the status quo (from her perspective). However, if legislators also have non-spatial utility

components that can be treated as stochastic from the perspective of the analyst, then it will
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be possible for the proposer to improve upon the status quo with positive probability and

the features of the utility functions that we estimate in this paper affect the distribution of

optimal proposals.

To study how the distribution of optimal proposals depends upon the assumed utility

function, we conduct a Monte Carlo experiment in which we randomly draw a set of stochastic

utility shocks for each alternative and for each of the 101 legislators and the president.14

Then given these shocks, we consider a series of proposals, beginning at the proposer’s ideal

point and moving towards the status quo. For each proposal considered, we ask whether a

majority of legislators and the president would support the proposal. The first proposal that

is supported by a majority of the legislators is the optimal bill for the leader to offer. If we

find no proposal between the proposer ideal point and the status quo that is preferred by

a majority of the legislators and the president to the status quo, then it is not possible for

the proposer to improve upon the status quo in that instance. In that case, the addition of

the non-spatial utility components does not alter the prediction of the standard theoretical

framework which omits such non-spatial considerations.

We run the experiment separately for the normal and quadratic utility functions 10,000

times. Under both Gaussian and quadratic utility and given the assumed locations of the

proposer, the legislators, the president, and status quo, we find that the proposer can offer a

bill that passes and which improves upon the status quo (from her perspective) approximately

33 percent of the time. Thus, once additional non-spatial utility components are allowed,

the sharp prediction of the standard framework disappears and profitable proposals for this

status quo in the black-out interval become possible about one-third of the time. We provide

insight as to why the proposer is able to move policy so frequently even under very unfavorable

circumstances and also why the probability of a successful proposal is similar under Gaussian

and quadratic utility in Appendix A. In the appendix, we characterize the conditions under

which, and frequency with which, a successful proposal is possible in a three-person legislature

14In this experiment, utility function parameters are set such that β = 5 and w = 1.
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that is otherwise similar on the legislature considered in our experiment.

While the proposer can move an advantageous proposal in one-third of instances under

both quadratic and Gaussian utility, the distribution of the optimal proposals is not the

same under both utility functions. The left panel of Figure 11 shows a quantile–quantile

(QQ) plot of the winning proposals made under the quadratic and Gaussian utility. The

dashed 45-degree line illustrates what the QQ-plot would look like if the distribution of

winning proposals under normal and quadratic utility were identical. Instead, all the points

on the QQ plot fall below the 45 degree line demonstrating that the proposer generally does

better (i.e. achieve winning proposals closer to their own ideal point) under Gaussian utility.

How can we explain superior legislative outcomes for the proposer under normal utility?

We explore this question on the right panel of Figure 11, which plots the fraction of trials,

for each utility function and each ideal point, that vote yea on the each set of the winning

proposals. The dark line shows the vote probabilities under normal utility, while the dashed

line shows the probabilities under quadratic utility. For both lines, a lowess smoother is

used to reduce noise from the simulation. Locations of the proposer, status quo, legislative

floor median, and president are shown below. The key trend to note is that under quadratic

utility, the probability of a yea vote is strictly decreasing as legislator ideal points increase. In

contrast, the flatter tails under normal utility create regions where the probability of voting

yea is somewhat flat and even begins to increase as legislator ideal points move very far

away from the proposer. The ability of the normal utility function to more frequently induce

spatial “mistakes” in the far tails of the ideological distribution thus makes it somewhat

easier for the prosper to achieve outcomes closer to their own ideal point.

This simple experiment does not describe all of the ways in which the shape of legislators’

utility functions might affect legislative bargaining. However, it does demonstrate how a

better understanding of how spatial preferences are translated into voting decisions could

affect theoretical expectations about the legislative process and policy outcomes.
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Figure 11: Results of Monte Carlo simulations from our legislative bargaining model with
stochastic utility. The left panel shows a Q-Q plot of the distribution of optimal proposals
under quadratic utility against the distribution of optimal proposals under Gaussian utility.
Notice that the distribution of optimal proposals under Gaussian utility is more favorable
to the proposer. The right panel shows the frequency with which legislators at each point
in the ideological spectrum support these proposals. The solid line represents the probability
of support under Gaussian utility. The dashed lines shows the probability of support under
quadratic utility.
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5 Conclusion

Empirical models of spatial voting are typically random utility models of Euclidean spatial

voting, where voters assign utility to each of two alternatives associated with each roll call.

However, the functions used to assign these utilities are usually assumed rather than esti-

mated. In this paper we attempt to examine the effects of variations in utility functions in

the estimation of ideal point estimation methods.

We began by considering the assumed utility functions of two leading implementations

of ideal point estimation, Poole and Rosenthal’s (1985) NOMINATE and Jackman’s IDEAL

(2008b). We noted that despite many similarities between the Gaussian and quadratic utility

functions, the two functions imply different behavior by legislators when choices are located

far from the legislator’s ideal point. Exploiting the fact that the quadratic utility function is

the first-order exponential approximation of the Gaussian utility function, we then introduce

a test designed to determine which utility function best fits a particular roll call data set. Our

application of the estimator to the U.S. Congress suggests that Gaussian utility functions

generally tend to fit the data better than quadratic utility functions. This trend appears to

hold true in a wide variety of contexts outside the U.S. Congress, including the U.S. Supreme

Court.

We then examined the possibility that extremists and moderates may have different utility

functions. Building on the work of Sherif and Hovland (1961) and Keisler et al. (1969), we

hypothesized that extremists would have more sharply-peaked utility functions than mod-

erates. Substantively, this hypothesis implies that extremists are relatively more likely to

select the closer alternative than moderates. We then introduce a variation of our original

model that allows separate weight parameters to be estimated for each individual legislator.

In applying this intensity estimator to four recent U.S. Senates, we found evidence that was

supportive of our hypothesis. This trend appears to hold when the same estimator is applied

to data from the U.S. Supreme Court.
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A Agenda setting in a three-person legislature with observed stochas-

tic utility shocks

Consider a three-person legislature in which the legislators have the preferences assumed in

Section 2. Assume there is a single spatial dimension. Suppose the legislators’ ideal points,

the proposers ideal point, and the status quo policy are as shown in Figure 12. Despite the

fact that the status quo is coincident with the ideal point of the median legislator, we show

that the proposer, P , will be able to offer a winning bill, B∗, that moves policy towards P

over half of the time because of the non-spatial stochastic utility components.

It is straightforward to show that the probability that a profitable proposal exists must

be at least one-half regardless of the shape of legislators’ utility functions.

To begin, define legislator j’s difference in utility between a bill, B, and the status quo,

0, as

∆Uj(B) + εj

where ∆Uj(B) = U(B,Xj)− U(0, Xj) is the difference in spatial utility (either Gaussian or

quadratic) and εj is the difference in the normally-distributed non-spatial utility shocks as

defined in Section 2. Note that Pr(εj > 0) = 1/2. Without loss of generality, we assume that

Legislator j will vote for the bill whenever ∆Uj(B) + εj ≥ 0. Now consider a bill B∗ < 0

(and, thus, preferred to the status quo by the proposer) that is sufficiently close to the status

quo that |∆Uj(B∗)| ≤ |εj| for all j. Such a B∗ is sure to exist because limB∗−→0 ∆Uj(B
∗) = 0

for all j. Given B∗, every legislator j’s vote is determined by the sign of εj. If εj ≥ 0 then

legislator j will support B∗ and she will support the status quo otherwise.

Table 4 shows all of the possible combinations of signs of εj for j = a, b, c. In pattern

numbers 1, 2, 3, and 4, the number of positive ε’s is greater than one and, thus, B∗ is

majority preferred. Because the ε’s are independently distributed, each of these patterns

happens with probability one-eighth. Consequently, it is immediately clear that a feasible
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Figure 12: Locations of legislators’ ideal points, the proposer’s ideal point and the status
quo. Notice that because the status quo coincides with the median legislator’s ideal point, the
proposer cannot improve upon the status quo in the absence of non-spatial utility components.

bill, B∗, is possible in at least one-half of all instances.15

Now consider patterns 5, 6, 7, and 8 and whether it might be possible to find a B∗ to

form winning coalitions in any of those instances. First note that no such B∗ is possible for

patterns 5 or 6. With the status quo located at 0 and εj < 0 for j ∈ {b, c}, there is no way

to select a B∗ that will offset the negative ε’s of legislators b or c and, therefore, no majority

coalition can be formed to move policy towards the proposer. This is because for legislators

b and c, ∆U(B) ≤ 0 for any B < 0 and, thus, there is no B that the proposer prefers to the

status quo that can offset their negative εs.

Patterns 7 and 8 present a different situation. In these cases it will sometimes be possible

to find a B∗ that offsets legislator a’s negative εa without offsetting legislators b’s or c’s

positive εb or εc. Figure 13 shows the conditions under which the proposer can find a B∗ that

will offset legislator a’s negative εa while not (completely) offsetting the positive εb in pattern

7—shown in the panels (b) and (d)—and the positive εc in pattern 8—shown in panels (a)

15While we have have constructed B∗ to be close to the status quo, our object is only to establish the
existence of a majority-preferred bill that is also preferred by the proposer. As shown in the experiment in
the Section 5, the proposer is often able to secure the passage of a bill that is more favorable to her than
the B∗ that we use to establish the existence of a feasible proposal.
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Pattern Difference in utility Feasible Probability Probability of
number shocks for (a, b, c) B∗ of occurring feasible B∗

1 (+,+,+) Yes 1/8 1
2 (+,+,-) Yes 1/8 1
3 (+,-,+) Yes 1/8 1
4 (-,+,+) Yes 1/8 1
5 (-,-,-) No 1/8 0
6 (+,-,-) No 1/8 0
7 (-,-,+) Maybe 1/8 p7 > 0
8 (-,+,-) Maybe 1/8 p8 > 1/2

Table 4: Possible arrangements of utility shocks and whether the status quo can be moved
under those conditions. In most cases, the potential to move the status quo depends only on
whether the idiosyncratic (non-spatial) utility shocks favor the B∗ over the status quo. In
four of the eight possible patterns of non-spatial utility advantage (or disadvantage) a feasible
B∗ exists regardless of the exact distribution of the idiosyncratic non-spatial utility shocks or
the shape of the utility functions. In two patterns no B∗ is feasible. In two other cases, a
feasible B∗ will exist with a probability (p7 or p8) that depends upon the shape of the utility
functions. Notice that a feasible B∗ will exist in over one-half of all cases.

and (c). In these cases, the shape of the utility functions matter. Panels (a) and (b) consider

the case of Gaussian utility while panels (c) and (d) consider the case of quadratic utility. In

each panel, B∗ is selected so that ∆Ua(B
∗) + εa = 0 (note the point (B∗,−εa) shown in each

panel). For legislator j ∈ {b, c}’s positive εj not to be offset by ∆Uj(B
∗) requires εj ≥ εj

(note the point (B∗,−εj) in each panel). Thus, if the point (B∗,−εj) falls below ∆Uc(B
∗)

then B∗ will receive two votes and will pass.

We consider bounds on the probability of a successful bill (B∗) when pattern 7 or 8

obtains, p7 and p8 respectively. The dotted line in each of the panels of Figure 13 shows

the reflection of ∆Ua about the x-axis. In three of the four panels, this dotted falls below

∆Uj(B) for all B ∈ (a, b). In those cases, we can write

Pr(εj > εj) = Pr(εj > |εa|) + Pr(|εa| > εj > εj).
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Because Pr(|εa| > εj > εj) > 0 in those cases, we know that

Pr(εj > εj) > Pr(εj > |εa|).

Because the εs are symmetrically distributed about 0 and independently distributed across

legislators, the probability that εj will be larger in absolute value than εa conditional on

εj > 0 and εa < 0 is one-half. Thus,

Pr(εj > εj) > 1/2.

Therefore, p8 > 1/2 in both the quadratic and the Gaussian utility cases (panels (b) and

(d)). It also follows that p7 > 1/2 in the Gaussian case (panel (a)). Because the dotted line

falls above ∆Uc(B
∗) in panel (c), 0 < p7 < 1/2 in the quadratic case.

Given these minimum values for p7 and p8, we can now bound from below the probability

that the proposer will be able to find a profitable B∗ to offer at 1/2+(1/8)(1/2)+(1/8)(1/2) =

5/8 in the Gaussian case and 1/2+(1/8)(1/2) = 9/16 in the quadratic case. Thus, regardless

the shape of the utility function, the proposer in this example is able to pull policy away

from a status quo located at the ideal point of the median voter over 56 percent of the time.

Adding a presidential veto reduces this probability by a factor 1/2 when the legislator

shocks are in patterns 1, 2, 3, and 4. This is because in those cases the president will have

a positive ε (and thus support B∗) only 1/2 of the time. The addition of the presidential

veto reduces the probability that a feasible B∗ exists when legislator shock patterns 7 and

8 obtain by a factor that depends upon the location of the president and the shape the

president’s utility function. However, with a presidential veto p7 and p8 remain above zero,

and the overall probability that the proposer can offer a winning bill is always greater than 25

percent regardless of the locations of the president or whether her utility function is Gaussian

or quadratic.

41



References

Bafumi, J., A. Gelman, D. Park, and N. Kaplan (2005). Practical issues in implementing

and understanding bayesian ideal point estimation. Political Analysis 13 (2), 171–187.

Clinton, J., S. D. Jackman, and D. Rivers (2004). The statistical analysis of roll call data:

A unified approach. American Political Science Review 98, 355–370.

Cox, G. and M. McCubbins (1993). Legislative leviathan: Party government in the House,

Volume 23. University of California Press.

Cox, G. and M. McCubbins (2005). Setting the agenda: Responsible party government in the

US House of Representatives. Cambridge University Press.

Desposato, S. (2006). Parties for Rent? Ambition, Ideology, and Party Switching in Brazil’s

Chamber of Deputies. American Journal of Political Science 50 (1), 62–80.

Enelow, J. M. and M. Hinich (1984). The Spatial Theory of Voting. New York: Cambridge

University Press.

Ennis, D. M. (1988). Confusable and Discriminable Stimuli: Comment on Nosofsky and

Shepard. Journal of Experimental Psychology 117, 408–411.

Hagemann, S. (2007). Applying Ideal Point Estimation Methods to the Council of Ministers

. Political Analysis 8, 279–296.

Heckman, J. J. and J. M. Snyder (1997). Linear Probability Models of the Demand for

Attributes With an Empirical Application to Estimating the Preferences of Legislators.

Rand Journal of Economics 28, 142–189.

Herron, M. C. and J. B. Lewis (2007). Did Ralph Nader Spoil Al Gore’s Presidential Bid?

A Ballot-Level Study of Green and Reform Party Voters in the 2000 Presidential Election.

Quarterly Journal of Political Science 2, 205–226.

42



Hinich, M. J. and M. J. Munger (1994). Ideology and the Theory of Political Choice. Ann

Arbor: University of Michigan Press.

Hinich, M. J. and M. J. Munger (1997). Analytical Politics. Ann Arbor: Cambridge University

Press.

Hix, S., A. Noury, and G. Roland (2007). Democratic Politics in the European Parliament.

Cambridge Univ Pr.

Hoff, P., A. Raftery, and M. Handcock (2002). Latent space approaches to social network

analysis. Journal of the american Statistical association 97 (460), 1090–1098.

Hovland, C., O. Harvey, and M. Sherif (1957). Assimilation and Contrast Effects in Reactions

to Communications and Attitude Change. Journal of Abnormal and Social Psychology 55,

244–252.

Ichniowski, C., K. Shaw, and G. Prennushi (1997). The Effects of Human Resource Man-

agement Practices on Productivity: A Study of Steel Finishing Lines. American Economic

Review 87 (3), 291–313.

Jackman, S. (2008a). pscl: classes and methods for r developed in the political science

computational laboratory.

Jackman, S. (2008b). pscl: Political Science Computational Laboratory.

Jenkins, J. (1999). Examining the Bonding Effects of Party: A Comparative Analysis of

Roll-Call Voting in the U.S. and Confederate Houses. American Journal of Political Sci-

ence 43 (4), 1144–1165.

Jenkins, J. and N. Monroe (2012). Buying negative agenda control in the us house. American

Journal of Political Science.

Jessee, S. (2009). Spatial voting in the 2004 presidential election. American Political Science

Review 103 (1), 59–81.

43



Kalandrakis, T. (2010). Rationalizable Voting. Theoretical Economics 5 (1), 93–125.

Keisler, C., B. Collins, and N. Miller (1969). Attitude Change: A Critical Analysis of Theo-

retical Approaches. New York: Wiley Press.

Krehbiel, K. (1998). Pivotal politics: A theory of US lawmaking. University of Chicago Press.

Lauderdale, B. (2010). Unpredictable voters in ideal point estimation. Political Analy-

sis 18 (2), 151–171.

Lewis, J. B. (2001). Estimating Voter Preference Distributions from Individual-Level Voting

Data. Political Analysis 9, 275–297.

Londregan, J. B. (2000). Estimating Legislators’ Preferred Points. Political Analysis 8,

35–56.

Martin, A. D. and K. Quinn (2002). Dynamic Ideal Point Estimation via Markov Chain

Monte Carlo for the U.S. Supreme Court, 1953-1999. Political Analysis 10, 134–153.

McCarty, N. M., K. T. Poole, and H. Rosenthal (1997). Income Redistribution and the

Realignment of American Politics. Washington DC: SEI Press.

McCarty, N. M., K. T. Poole, and H. Rosenthal (2006). Polarized America: The Dance of

Ideology and Unequal Riches. Cambridge: MIT Press.

McFadden, D. (1973). Conditional Logit Analysis of Qualitatative Choice Behavior. In

Frontiers of Economics. New York: Academic Press.

Myagkov, M. and D. Kiewiet (1996). Czar Rule in the Russian Congress of People’s Deputies?

Legislative Studies Quarterly 21 (1), 5–40.

Nosofsky, R. M. (1986). Attention, Similarity, and the Context Theory of Classification.

Journal of Experimental Psychology 115, 39–57.

Peress, M. (2009). Small Chamber Ideal Point Estimation. Political Analysis 17, 276–290.

44



Poole, K. and H. Rosenthal (1983). A Spatial Model For Legislative Roll Call Analysis. GSIA

Working Paper 5-83-84, Carnegie–Mellon University.

Poole, K. T. (2000). Non-parametric Unfolding of Binary Choice Data. Political Analysis 8,

211–237.

Poole, K. T. (2005). Spatial Models of Parliamentary Voting . Cambridge: Cambridge

University Press.

Poole, K. T. and H. Rosenthal (1985). A Spatial Model for Legislative Roll Call Analysis.

American Journal of Political Science 29, 357–84.

Poole, K. T. and H. Rosenthal (1991). Patterns of Congressional Voting. American Journal

of Political Science 35, 228–278.

Poole, K. T. and H. Rosenthal (1997). Congress: A Political-Economic History of Roll Call

Voting. New York: Oxford University Press.

Rosenthal, H. and E. Voeten (2004). Analyzing Roll Calls with Perfect Spatial Voting:

France 1946–1958. American Journal of Political Science 48 (3), 620–632.

Schonhardt-Bailey, C. (2003). Ideology, Party and Interests in the British Parliament of

1841-47. British Journal of Political Science 33 (4), 581–605.

Shapiro, A. (1986). Asymptotic theory of overparameterized structural models. Journal of

the American Statistical Association 81 (393), 142–149.

Shepard, R. N. (1986). Discrimination and Generalization in Identification and Classification:

Comment on Nosofsky. Journal of Experimental Psychology 115, 58–61.

Shepard, R. N. (1987). Toward a Universal Law of Generalization for Psychological Science.

Science 242, 1317–1323.

45



Sherif, C., M. Sherif, and R. Nebergall (1965). Attitudes and Attitude Change: The Social

Judgement-Involvement Approach. Philadelphia: W.B. Saunders.

Sherif, C. H. M. (1952). Judgmental Phenomena and Scales of Attitude Measurement: Item

displacement in Thurstone scales. Journal of Abnormal and Social Psychology 47, 822–832.

Sherif, M. and C. Hovland (1961). Social Judgement: Assimilation and Contrast Effects in

Communication and Attitude Change. New Haven: Yale University Press.

Shor, B., C. Berry, and N. McCarty (2010). A Bridge to Somewhere: Mapping State and

Congressional Ideology on a Cross-institutional Common Space. Legislative Studies Quar-

terly 35 (3), 417–448.

Voeten, E. (2000). Clashes in the Assembly . International Organization 54 (2), 185–215.

46



●

a

●

S

●

c

●

P

●

(B*, − εa)

(B*, − εb)

∆Ua

∆Uc

 B*

(a) Gaussian utility, {a, c} coalition

●

a

●

S

●

b

●

P

●

(B*, − εa)

(B*, − εb)

∆Ua

∆Uc

 B*

(b) Gaussian utility, {a, b} coalition

●

a

●

S
●

c

●

P
●

(B*, − εa)

(B*, − εb)

∆Ua ∆Uc

 B*

(c) Quadratic utility, {a, b} coalition

●

a

●

S
●

b

●

P
●

(B*, − εa)

(B*, − εb)

∆Ua

∆Uc

 B*

(d) Quadratic utility, {a, c} coalition

Figure 13: Differences in spatial utility between any bill, B, and a status quo at 0 for given
pairs of legislators. Each panel considers conditions under which the proposer can choose a
B∗ that a and one of b or c will vote for when legislator a’s net non-spatial utility favors the
status quo (εa < 0) and either legislator b or c’s net non-spatial utility favors the bill (εb > 0
or εc > 0). If the proposer can offer a B∗ such that legislator a’s non-spatial utility difference
is exactly offset and legislator b’s or c’s non-spatial utility difference is not completely offset
by their spatial preference for the status quo then a winning coalition of legislator a and
either b or c is possible. This happens whenever εj ≥ εj for j ∈ {b, c}. See text for a detailed
description.
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