LEGACY CONTENT. If you are looking for Voteview.com, PLEASE CLICK HERE

This site is an archived version of Voteview.com archived from University of Georgia on May 23, 2017. This point-in-time capture includes all files publicly linked on Voteview.com at that time. We provide access to this content as a service to ensure that past users of Voteview.com have access to historical files. This content will remain online until at least January 1st, 2018. UCLA provides no warranty or guarantee of access to these files.

POLI 277 MEASUREMENT THEORY
Seventh Assignment
Due 4 June 2008


  1. In this problem we are going to use MCMCPack developed by Andrew Martin and Kevin Quinn to do a one-dimensional parametric unfolding of the 110th (2007) U.S. Senate. Download the new R program below:

    keithMCMC_2008.r -- Program to run MCMCPack on the 110th (2007) Senate.
    keithMCMC_2008.r looks like this:
    #
    #  keithMCMC_2008.r -- Runs one-dimensional Bayesian QN using
    #                      Andrew Martin and Kevin Quinn's MCMCPack.
    #
    #
    rm(list=ls(all=TRUE))
    #
    library(MCMCpack)
    #
    #  Andrew and Kevin Wrote the function below
    #
    ## read rollcall data in Keith/Howard format (*.ord) into a matrix for use 
    ##    by MCMCpack
    ##
    ## NOTE: the function in pscl is called readKH().  It reads the data and puts 
    ## it into the more useful rollcall object.  Our function is called 
    ## readKHmatrix() which produces the matrix used by MCMCpack with the correct 
    ## variable labels.  This also implements a method to take a rollcall object 
    ## and convert it into a matrix for use by MCMCpack.  Since Simon's rollcall 
    ## object is nice and general, I've decided that it makes sense for 
    ## us to require pscl, thus making these functions wrappers. S3 classes make
    ## the as.matrix.rollcall work very well.
    ##
    ## ADM 5/19/2008
    #
    library(pscl)
    #
    as.matrix.rollcall <- function(rollcall) {
       if(!class(rollcall)=="rollcall") 
                        stop("as.matrix.rollcall requires rollcall object.\n")
       outmat <- convertCodes(rollcall)
       rownames(outmat) <- rownames(rollcall$votes)
       colnames(outmat) <- colnames(rollcall$votes)	
       outmat
    }
    #
    readKHmatrix <- function(file, ...) {
    	outmat <- readKH(file, ...)
        as.matrix(outmat)	
    }
    #
    #
    sen110matrix <- readKHmatrix("https://legacy.voteview.com/k7ftp/sen110kh_1st.ord")
    #
    Sen.rollcalls <- sen110matrix[,10:ncol(sen110matrix)]
    #
    #### NOTE -- The names of the legislators are in the first column
    #            of sen110matrix[..] 
    #            sen110matrix[,1] = names of legislators
    #
    posterior <- MCMCirt1d(Sen.rollcalls,
                           theta.constraints=list("BOXER (D CA)"=-1, "BUSH (R USA)"=1),
                           burnin=2000, mcmc=100000, thin=20, verbose=500)
    geweke.diag(posterior)
    pdf(file="c:/ucsd_homework_7/keithplots_SEN110.pdf")
    plot(posterior)
    summary(posterior)
    sss <- summary(posterior)
    #
    # > class(sss)
    # [1] "summary.mcmc"
    # > length(sss)
    # [1] 6
    # > names(sss)
    # [1] "statistics" "quantiles"  "start"      "end"        "thin"      
    # [6] "nchain"    
    #
    write.table(sss$statistics,"c:/ucsd_homework_7/SEN110_tab1.txt")
    write.table(sss$quantiles,"c:/ucsd_homework_7/SEN110_tab2.txt")
    dev.off()
    plot(posterior[,2])
    #
    1. Write an R program that graphs the rank ordering from Optimal Classification (horizontal axis) against the MCMCPack medians (vertical axis). Label the axes appropriately and label a few of the Senators including Obama (D-IL), Clinton (D-NY), McCain (R-AZ), and President Bush (R-USA). Run OC_in_R_2008.r from question 2 of Homework 5 to obtain the rank ordering. Note that you will need to set "dims=1" in the code.

    2. Report the correlation between the OC rank ordering and the MCMCPack medians.

    3. Repeat (a) and (b) using the 104th Senate (SEN104KH.ORD). Be sure to use "KERRY (D MA)"=-1, "HELMS (R NC)"=1 as your constraints (see next problem).

  2. In this problem we are going to use Simon Jackman's Bayesian MCMC Quadratic-Normal scaling program IDEAL which is part of the pscl package in R (see above, be sure you have installed the latest version!).

    Download the R program below:

    idealKeith_2008.r -- Program to run IDEAL on the 104th Senate.

    idealKeith_2008.r looks like this:
    #
    #  idealKeith_2008.r -- Implements Simon's IDEAL in R
    #
    rm(list=ls(all=TRUE))
    #
    library(pscl)
    #
    s104 <- readKH("https://legacy.voteview.com/k7ftp/sen104kh.ord",dtl=NULL,
                     yea=c(1,2,3),
                     nay=c(4,5,6),
                     missing=c(7,8,9),
                     notInLegis=0,
                     desc="104th U.S. Senate",
                     debug=FALSE)
    #
    #  ---- Useful Commands To See What is in an Object
    #
    # > length(kpideal)
    # [1] 9
    # > class(kpideal)
    # [1] "ideal"
    # > names(kpideal)
    # [1] "n"       "m"       "d"       "codes"   "x"       "beta"    "xbar"   
    # [8] "betabar" "call"   
    #
    #
    csts <- constrain.legis(s104,x=list("KERRY (D MA)"=-1, "HELMS (R NC)"=1),d=1)
    kpideal <- ideal(s104, priors=csts, startvals=csts, store.item=TRUE)
    sumkpideal <- summary(kpideal,sort=FALSE,include.beta=TRUE)
    #
    # > length(sumkpideal)
    # [1] 6
    # > class(sumkpideal)
    # [1] "summary.ideal"
    # > names(sumkpideal)
    # [1] "object"      "xResults"    "bResults"    "bSig"        "party.quant"
    # [6] "sort" 
    #
    write.table(sumkpideal$x,"c:/ucsd_homework_7/tab_x_sen104.txt")
    #
    #  Beta Parameter -- Item Discrimination Parameter 
    #
    write.table(sumkpideal$bResults[[1]],"c:/ucsd_homework_7/tab_Beta_sen104.txt")
    #
    #  Alpha Parameter -- 
    #
    write.table(sumkpideal$bResults[[2]],"c:/ucsd_homework_7/tab_alpha_sen104.txt")
    #
    #  Grab Beta and Alpha Parameters 
    #
    zbeta <- as.numeric(sumkpideal$bResults[[1]][,1])
    zintercept <- as.numeric(sumkpideal$bResults[[2]][,1])
    #
    #  alpha + beta*x_i = 2*gamma(c_j - w_i) = 2*gamma*c_j - 2*gamma*w_i (see page 94 "Spatial Models...")
    #    If s=1, w_i = x_i, hence:
    #
    #  Cutting Point = -(alpha/beta) = c_j
    #
    zidealcuttingpoint <- -(zintercept/zbeta)
    #
    The tab_x_sen104.txt file has the esimated legislator ideal points in a format similar to those from MCMCPack that you estimated for question 1 of Homework 6. The file should look something like this:
    
    "Mean" "Std.Dev." "X2.5." "X97.5."
    "CLINTON (D USA)" -0.838365111806654 0.0837442152678253 -1.01884767033782 -0.665329440487564
    "HEFLIN (D AL)" -0.39738125112715 0.0233014059918004 -0.458722473420475 -0.367179335034756
    "SHELBY (R AL)" 0.192288250458293 0.0483187634194333 0.102161280550768 0.279948217301196
    "MURKOWSKI (R AK)" 0.341267428987682 0.0576741119398679 0.234858991235568 0.433679311852439
    "STEVENS (R AK)" 0.106329703399127 0.0426401218036045 0.0210137194174676 0.175248280359410
    "KYL (R AZ)" 0.648046001774651 0.0705145161757214 0.50606479796208 0.748225375143048
    "MCCAIN (R AZ)" 0.248423399079896 0.0422728098469727 0.176571268881306 0.317714721496362
    "BUMPERS (D AR)" -0.737689801118327 0.0346469656223734 -0.81108268925803 -0.684190550979347
                     etc. etc. etc.
    "MURRAY (D WA)" -0.810346563869619 0.0328814031327003 -0.895248110447204 -0.748713854669056
    "BYRD (D WV)" -0.517213577811396 0.0250628159738928 -0.574921236143488 -0.48578609255005
    "ROCKEFELLER (D WV)" -0.689181287093485 0.0302030516570273 -0.746984185845523 -0.632901456184189
    "FEINGOLD (D WI)" -0.646559362986596 0.0245048318592177 -0.699205123571608 -0.605462148691613
    "KOHL (D WI)" -0.562132697384491 0.0273354794581981 -0.624710163585664 -0.515095040719995
    "SIMPSON (R WY)" 0.055120978671 0.0399317804076187 -0.0341207520914637 0.115392162970526
    "THOMAS (R WY)" 0.401758310370078 0.0544358006806424 0.291296195244438 0.491393261319264
    1. Write a macro similar to the one you used in question 1.a. and 1.b. of Homework 6 to make a nicely formatted file of the legislator coordinates. Turn in a copy of this macro.

    2. Write an R program similar to the one that you used in question 2.b. of Homework 6 that graphs the rank ordering from Optimal Classification (horizontal axis) against the IDEAL medians (vertical axis). Label the axes appropriately and label a few of the Senators including Campbell (D-CO) and Campbell (R-CO).

    3. Report the correlation between the OC rank ordering from OC_in_R_2008.r and the IDEAL medians.

    4. Write an R program similar to the one that you used in question 2.b. of Homework 6 that graphs the MCMC medians (horizontal axis) against the IDEAL medians (vertical axis). Label the axes appropriately and label a few of the Senators including Campbell (D-CO) and Campbell (R-CO).

    5. Report the correlation between the MCMC medians from OC_in_R_2008.r and the IDEAL medians. Compute this correlation with and without the constrained Senators, Kerry (D-MA) and Helms (R-NC).

    6. Use Epsilon to combine the file you created in (a) with that from question 1.a. and 1.b. of Homework 6 and include in that file the 2.5% and 97.5% quantiles corresponding to the medians of both procedures. Report the Pearson correlation between the lengths of the "confidence intervals" for the two Bayesian procedures.

  3. Run IDEAL on the 110th Senate (recall that the file name is SEN110KH_1ST.ORD). Use "BOXER (D CA)"=-1, "BUSH (R USA)"=1, for consistency with problem (1).

    1. Write an R program that graphs the rank ordering from Optimal Classification (horizontal axis) against the IDEAL medians (vertical axis). Label the axes appropriately and label a few of the Senators including Obama (D-IL), Clinton (D-NY), McCain (R-AZ), and President Bush (R-USA).

    2. Report the correlation between the OC rank ordering and the IDEAL medians.

    3. Repeat (a) and (b) using the MCMCPack medians for the horizontal axis of the plot in (a) with the IDEAL medians as the vertical axis. Report the correlation between the two sets of medians. Compute this correlation with and without the constrained Senator, Boxer (D-CA) and President Bush (R-USA).

    4. Write an R program that graphs the cutting point rank ordering from Optimal Classification (horizontal axis) against the IDEAL cutting points (-alpha/beta) (vertical axis).

    5. Report the correlation between the cutting point rank ordering from Optimal Classification and the IDEAL cutting points (-alpha/beta).

  4. In this problem we are going to use metric unfolding to analyze the thermometer scores from the 2004 election study in the same way that we did for question 4 of Homework 5. Download the the program, control card file, and data file and place them in the same directory.

    MLSMU6_2008.EXE -- Metric Unfolding Program
    Here is what UNFOLD_2008.CTL looks like:
    
    ELEC2004_ONLY_10_2008_CLASSA.DAT
       10    2    2   10    0    0
        1    1    0   10    3
       0.001  -0.020   2.000   2.000   1.500   0.000 100.000
    (10A1,5X,10F3.0)
    777888889
    BUSH  
    KERRY 
    CHENEY   
    EDWARDS
    NADER 
    ASHCROFT
    LBUSH
    BCLINTON
    HCLINTON
    MCCAIN
    The variables in ELEC2004_ONLY_10_2008_CLASSA.DAT are:
     I4 2004 Pre Case ID"      
     I4 2004 Post Case ID"
     I1  Voted?? (1=Voter, 2=Nonvoter Registered, 3=Nonvoter not Registered)
                0,4,5,6,7,8,9 Missing
     I1  Who Voted For (1=Kerry, 3=Bush, 5=Nader, 7,8,9,0=Missing)
     I3 Feeling Thermometer: GW Bush"
     I3 Feeling Thermometer: John Kerry"
     I3 Feeling Thermometer: Cheney"
     I3 Feeling Thermometer: John Edwards"
     I3 Feeling Thermometer: Nader"
     I3 Feeling Thermometer: John Ashcroft"
     I3 Feeling Thermometer: Laura Bush"
     I3 Feeling Thermometer: Bill Clinton"
     I3 Feeling Thermometer: Hillary Clinton"
     I3 Feeling Thermometer: John McCain"
    Here is what ELEC2004_ONLY_10_2008_CLASSA.DAT looks like:
    
         1  23 1 1  70 85 50 50  0 50888 15  0 50
         2 753 1 1  40 85 40 70777777 60 70 70 60
         3 758 1 3 100 50100 50 50 50100 50 50 70
         42006 0 0  50 60 40 70 60 50 60100100777
         5 915 1 3 100  0 85  0 50100100  0  0 50
         61002 1 5  60 30 15 30100 50 50 85  0 85
         7 521 1 3  85 15 70 50 40 60 70 15 30 70
         8 492 1 1  50 70 60100 85 30 70100100 50
         92082 0 0  30 70 15 60 15 60 85 85 70 60
        10 798 1 3 100  0100  0  0100100  0  0 85
                 etc. etc. etc.
      1209 336 1 3 100 40 85 70777777 60 60 90777
      12102136 0 0  70 15 40 40 15 60 70 15 15 50
      1211 567 1 3  85 15 85 40 50 50100  0  0 70
      1212 137 2 0  70 15 60 50888888 60 60 40888
      1213 245 3 0  85 40 70 40  0 60 85 85 85 85
     15601     0 0  20 70 30 80 30 40 40 85 70 50
     11041     0 0   5 55  0 65 60  0 40 70 60 55
     22535     0 0  10 80  5 85 80  5 15 90 75 20
     01708     0 0  30 60 20 55 30 25 40 75 65 45
     51947     0 0  80  5 90 10  5 60 95 50 20 75
    Note that our responses are on the bottom of the file!!

    Run MLSMU6_2008.EXE and get the FORT.22 file. It should look something like this:
     
     BUSH             0.8480    0.1020  133.5080    0.8077 1209.0000
     KERRY           -0.7991   -0.2032   93.9661    0.7172 1195.0000
     CHENEY           0.8978    0.2765  108.1521    0.7137 1145.0000
     EDWARDS         -0.6975   -0.2786   92.3503    0.6419 1055.0000
     NADER            0.0930   -1.0074  120.2924    0.4031  985.0000
     ASHCROFT         0.8547    0.3513  102.1332    0.5537  885.0000
     LBUSH            0.5870    0.0099  130.0099    0.5718 1168.0000
     BCLINTON        -0.6780    0.2199  137.7534    0.7501 1205.0000
     HCLINTON        -0.7173    0.2855  141.7212    0.7317 1204.0000
     MCCAIN           0.2191   -0.5298  115.8300    0.2350  957.0000
          1  23       0.2897    0.4702    3.0352    0.0951    9.0000
          2 753      -0.2892   -0.0868    0.1104    0.8448    8.0000
          3 758       0.4226    0.0174    0.8472    0.6802   10.0000
          42006      -0.3073    0.1329    0.6144    0.7366    9.0000
          5 915       1.0124    0.0468    0.7428    0.9437   10.0000
                etc. etc. etc.
       1206 454      -0.9171    0.2161    1.5035    0.7271   10.0000
       1207 281      -0.2422    0.3931    1.0378    0.5324   10.0000
       1208 876      -1.2111    0.1200    1.0775    0.7621   10.0000
       1209 336       0.1473    0.2071    1.4248    0.0736    7.0000
       12102136       0.4797    0.7210    1.0408    0.5533   10.0000
       1211 567       0.8534   -0.2858    0.7593    0.8656   10.0000
       1212 137       0.3145   -0.2516    0.6135    0.3674    7.0000
       1213 245       0.1345    0.3013    1.6730    0.7454   10.0000
      15601          -0.4762    0.1070    0.2625    0.9143   10.0000
      11041          -0.6643   -0.7504    0.4873    0.8314   10.0000
      22535          -0.8912   -0.3698    1.1215    0.7863   10.0000
      01708          -0.4174    0.4242    0.3558    0.8845   10.0000
      51947           0.6235    0.3654    1.2224    0.7669   10.0000
    1. Use R to plot the 10 candidates/Political Figures in two dimensions. This plot should be very similar to the one you did for question 4 of Homework 5.

    2. Use Epsilon to insert the voted and voted for variables into FORT.22 (strip off the candidate coordinates first). Use R to make two-dimensional plots of the Voters, Non-Voters, Bush Voters only, and Kerry Voters only. Label each plot appropriately and use solid dots to plot the respondents. In the Voters plot indicate our positions in the plot (be creative -- use special symbots). Turn in all these plots.

    3. Use R to make smoothed histograms -- using the first dimension from the thermometer scaling -- of the Voters and Non-Voters only, and the Kerry Voters, Bush Voters, and Non-Voters. Your Bush-Kerry-NonVoters plot should look like the one for Question 5.d of Homework 5. Again, indicate our positions in the plot of the Voters using arrows as in the figure for Question 3.c of Homework 5.

  5. In this problem we are going to use the black box, a scaling procedure I developed to recover latent -- basic -- dimensions from a set of individuals' responses to a set of issue scales. You will find that reading "How to Use the Black Box" will be of great help in doing this problem. Download the the program, control card file, and data file and place them in the same directory.

    BLACKBOX.EXE -- The Basic Space Program
    The control card file BLACKBOX_NES1980.DAT looks like this:
    NES1980.DAT
     DECOMPOSITION OF 14 1980 7-POINT SCALES
        3   14    4    8   Number Dimensions Estimated; Number of Issue Scales; Max. Number of Missing Data Values; Min. Number of Responses by Respondent
    (8X,I4,527X,I1,13X,I1,11X,I1,11X,I1,11X,I1,13X,I1,1217X,I1,36X,I1,17X,I1,17X,I1,17X,I1,18X,I1,5X,I1,2X,I1)
    LIBERAL/CONSERVATIVE   Name of Issue Scale
        0    8    9        Missing Data Values
    DEFENSE
        0    8    9
    GOVT SERVICES
        0    8    9
    INFLATION
        0    8    9
    ABORTION
        0    7    8    9
    TAX CUTS
        0    8    9
    LIBERAL/CONSERVATIVE
        0    8    9
    GOVT HELP MINORITIES
        0    8    9
    RUSSIA
        0    8    9
    WOMENS EQUAL ROLE
        0    8    9
    GOVT JOBS
        0    8    9
    EQUAL RIGHTS AMEND
        0    8    9
    BUSING
        0    8    9
    ABORTION
        0    7    8    9
    BLACKBOX creates three output files: BLACK23.DAT, BLACK24.DAT, and BLACK28.DAT. BLACK23.DAT contains various information about the estimation, BLACK24.DAT is the output file for the respondent parameters (the n by s matrix Y of coordinates of the individuals on the basic dimensions, where n is the number of respondents in the scaling), and BLACK28.DAT is the output file containing the m by s matrix W of weights, and c is a vector of constants of length m, where m is the number of issue scales.

    1. Run BLACKBOX and turn in a copy of BLACK23.DAT and BLACK28.DAT.

    2. OLS80_2008_NEW.DAT contains the following variables:
      C  VAR 0004    LOC     9  4  INTERVIEW NUMBER (CASE I.D. OF RESPONDENT)
      C  VAR 0008    LOC    20  2  ICPSR STATE CODE
      C  VAR 0266    LOC   539  1  PARTY ID 0-6 (7,8,9 MISSING)
      C  VAR 0408    LOC   699  2  AGE (0 MISSING)
      C  VAR 0409    LOC   701  1  MARRIED 1,7=YES 2-5=NO (9 MISSING)
      C  VAR 0436    LOC   749  2  EDUCATION (98,99 MISSING)
      C                             01-06 = HIGH SCHOOL OR LESS
      C                             07-08 = SOME COLLEGE
      C                             09-10 = COLLEGE DEGREE
      C  VAR 0686    LOC  1184  2  FAMILY INCOME (98,99 MISSING)
      C                             01.  A.  NONE OR LESS THAN $2,000
      C                             02.  B.  $2,000-$2,999
      C                             03.  C.  $3,000-$3,999
      C                             04.  D.  $4,000-$4,999
      C                             05.  E.  $5,000-$5,999
      C                             06.  F.  $6,000-$6,999
      C                             07.  G.  $7,000-$7,999
      C                             08.  H.  $8,000-$8,999
      C                             09.  J.  $9,000-$9,999
      C                             10.  K.  $10,000-$10,999
      C                             11.  M.  $11,000-$11,999
      C                             12.  N.  $12,000-$12,999
      C                             13.  P.  $13,000-$13,999
      C                             14.  Q.  $14,000-$14,999
      C                             15.  R.  $15,000-$16,999
      C                             16.  S.  $17,000-$19,999
      C                             17.  T.  $20,000-$22,999
      C                             18.  U.  $23,000-$24,999
      C                             19.  V.  $25,000-$29,999
      C                             20.  W.  $30,000-$34,999
      C                             21.  X.  $35,000-$49,999
      C                             22.  Z.  $50,000 AND OVER
      C  VAR 0720    LOC  1309  1  SEX 1=MALE 2=FEMALE             
      C  VAR 0721    LOC  1310  1  RACE  1=WHITE, 2=BLACK
      C  VAR 0988    LOC  1763  1  VOTED 1=YES, 5=NO, 9=NO POST ELECTION INTERVIEW
      C  VAR 0994    LOC  1772  1  PRESIDENTIAL VOTE                
      C                                494  1.  REAGAN
      C                                383  2.  CARTER
      C                                 10  5.  CLARK
      C                                 81  6.  ANDERSON
      C                                  4  7.  OTHER, SPECIFY
      C
      
      
      Use Epsilon to insert the variables from OLS80_2008_NEW.DAT into the 3-dimensional coordinate subset of BLACK24.DAT (cut out the 3-dimensional coordinates into a separate file first!). If you did it correctly it should look something like this:
            1      1 24 6 52 1  1 14 1 1 5 0 -0.281  0.392  0.024
            2      2 24 0 57 1  1 98 2 2 1 2  0.600  0.213  0.197
            3      3 23 0 61 1  5 17 2 2 5 0  0.602 -0.053  0.787
            4      5 45 0 70 4  1  3 1 2 1 1 -0.126 -0.200  0.208
            5      7 45 0 47 1  1  7 2 2 1 2  0.416 -0.002 -0.275
            6      8 25 6 86 3  3  4 1 1 5 0  0.368  0.128 -0.097
            7      9 71 4 52 1  7 22 2 1 1 1 -0.380 -0.259 -0.060
            8     10 25 1 30 1  6 21 2 1 1 2 -0.116 -0.215 -0.204
            9     11 23 0 37 1  9 19 1 2 1 2  0.075  0.701  0.350
           10     12 24 3 31 1  5 16 2 1 5 0  0.170 -0.031  0.113
                         etc. etc. etc.
         1260   1754 49 0 33 1 10 21 2 1 1 2  0.231 -0.209 -0.178
         1261   1756 49 6 30 1  9 22 2 1 1 1 -0.275 -0.093  0.206
         1262   1757 49 1 62 1  1  7 1 1 1 2 -0.005 -0.028  0.170
         1263   1758 49 5 33 1 10 22 1 1 1 1 -0.166 -0.345  0.055
         1264   1759 49 4 46 1  6 19 1 1 1 1 -0.449 -0.334 -0.234
         1265   1760 49 3 53 1  6 18 1 1 5 0 -0.337 -0.363 -0.291
         1266   1761 49 0 68 5  3  8 2 1 1 2 -0.017 -0.083 -0.151
         1267   1762 49 1 67 5  3 99 2 1 5 0 -0.160  0.353 -0.302
         1268   1763 49 0 56 1  2 17 1 1 1 2  0.285  0.215  0.260
         1269   1764 49 6 35 1 10 21 2 1 1 1 -0.135 -0.328 -0.005
         1270   1765 49 8 33 3  6 99 2 1 1 1 -0.046 -0.161 -0.292
      Make a smoothed histogram of the Reagan, Carter, and Anderson voters along with the non-Voters. The graph should look something like this:



      turn in this graph.

    3. Make separate two-dimensional plots of the Reagan, Carter, and Anderson voters and non-Voters using the first two dimensions of the the 3-dimensional coordinates.