45-733 PROBABILITY AND STATISTICS I
============================================================
Dependent Variable: GNP
Method: Least Squares
Date: 02/25/99 Time: 15:49
Sample: 1915 1988
Included observations: 74
============================================================
Variable CoefficientStd. Errort-Statistic Prob.
============================================================
C 3.025348 0.547696 5.523772 0.0000 (1)
MILMOB 3.697863 0.547363 6.755782 0.0000
============================================================
R-squared (2) 0.387966 Mean dependent var 3.061841 (3)
Adjusted R-squared 0.379466 S.D. dependent var 5.980692 (4)
S.E. of regression 4.711230 Akaike info criter 5.964430
Sum squared resid 1598.089 Schwarz criterion 6.026702
Log likelihood (5) -218.6839 F-statistic 45.64060 (6)
Durbin-Watson stat 1.266900 Prob(F-statistic) 0.000000 (7)
============================================================
H0: b0 = 0
H1: b0 ¹ 0
where
Ù Ù
(b0 - b0)/(VAR(b0)1/2
has at t-distribution with n-k-1 degrees of freedom (k = number of
independent variables excluding the constant). The test statistic here
is just the coefficient value divided by the standard error: Ù Ù
r2 = COV(Y,Y)2/[VAR(Y)VAR(Y)], where
Ù
Y = GNP and Y is the estimated GNP based on the above equation:
Ù
GNP = 3.025348 + 3.697863*MILMOB
Mean dependent var. This is literally the sample mean
discussed in class: _
Yn = Si=1,nYi/n
Note that the sample size, n, here is equal to 74.
S.D. dependent var: This is the unbiased estimator formula
discussed in class: _
sy = {[åi=1,n (yi - Yn)2]/(n -1)}1/2
Log likelihood. This is the value of the log of the likelihood
function: