Note Set 11 Handouts






============================================================
White Heteroskedasticity Test:
============================================================
F-statistic 2.872725 Probability 0.000038
Obs*R-squared 54.15035 Probability 0.000094
============================================================
Test Equation:
LS // Dependent Variable is RESID^2
Date: 04/21/98 Time: 13:03
Sample: 1 336
Included observations: 336
============================================================
Variable CoefficienStd. Errort-Statistic Prob.
============================================================
C -5.273037 1.975978 -2.668570 0.0080
TAX 0.004902 0.076273 0.064269 0.9488
TAX^2 -0.014658 0.040564 -0.361361 0.7181
DRKAGE 0.562102 0.206821 2.717822 0.0069
DRKAGE^2 -0.014380 0.005285 -2.720967 0.0069
PCINC -0.074213 0.146670 -0.505982 0.6132
PCINC^2 0.009711 0.019575 0.496121 0.6202
MILES 94.47385 36.46556 2.590769 0.0100
MILES^2 -3898.757 1599.262 -2.437848 0.0153
YNGDRV -1.304460 0.694870 -1.877270 0.0614
YNGDRV^2 0.965221 0.462340 2.087686 0.0376
INSP 0.004712 0.009554 0.493171 0.6222
MORMON -0.677308 0.233042 -2.906385 0.0039
MORMON^2 0.727000 0.321472 2.261470 0.0244
PROT -0.260051 0.236303 -1.100500 0.2720
PROT^2 0.090228 0.418702 0.215494 0.8295
CATH -0.312100 0.129396 -2.411972 0.0164
CATH^2 0.521536 0.192144 2.714302 0.0070
SOBAB -0.533068 0.217292 -2.453235 0.0147
SOBAB^2 1.122543 0.920530 1.219453 0.2236
WET -0.116754 0.847227 -0.137807 0.8905
WET^2 0.086463 0.522267 0.165553 0.8686
============================================================
R-squared 0.161162 Mean dependent var 0.040846
Adjusted R-squared 0.105061 S.D. dependent var 0.072709
S.E. of regression 0.068783 Akaike info criter-5.290355
Sum squared resid 1.485577 Schwarz criterion -5.040425
Log likelihood 434.0164 F-statistic 2.872725
Durbin-Watson stat 1.896893 Prob(F-statistic) 0.000038
============================================================
LS(H) LFT18T20 C TAX DRKAGE PCINC MILES YNGDRV INSP MORMON PROT CATH SOBAB WET
============================================================
LS // Dependent Variable is LFT18T20
Date: 04/21/98 Time: 13:07
Sample: 1 336
Included observations: 336
White Heteroskedasticity-Consistent Standard Errors &
Covariance
============================================================
Variable CoefficienStd. Errort-Statistic Prob.
============================================================
C 3.165057 0.293886 10.76969 0.0000
TAX -0.278794 0.045943 -6.068288 0.0000
DRKAGE -0.035408 0.008922 -3.968661 0.0001
PCINC -0.195457 0.039210 -4.984835 0.0000
MILES 110.1364 8.881711 12.40036 0.0000
YNGDRV 1.524236 0.161228 9.453931 0.0000
INSP -0.075403 0.026855 -2.807803 0.0053
MORMON -0.814448 0.137447 -5.925542 0.0000
PROT -0.712803 0.143324 -4.973384 0.0000
CATH -0.504089 0.160777 -3.135327 0.0019
SOBAB -0.707793 0.244949 -2.889549 0.0041
WET 0.424073 0.106305 3.989223 0.0001
============================================================
R-squared 0.570763 Mean dependent var 4.025630
Adjusted R-squared 0.556190 S.D. dependent var 0.308939
S.E. of regression 0.205812 Akaike info criter-3.126519
Sum squared resid 13.72424 Schwarz criterion -2.990194
Log likelihood 60.49186 F-statistic 39.16620
Durbin-Watson stat 1.156329 Prob(F-statistic) 0.000000
============================================================
LS(WT=WEIGHT) LFT18T20 C TAX DRKAGE PCINC MILES YNGDRV INSP MORMON PROT
CATH SOBAB WET
============================================================
LS // Dependent Variable is LFT18T20
Date: 04/21/98 Time: 13:10
Weighting series: WEIGHT
Sample: 1 336
Included observations: 336
============================================================
Variable CoefficienStd. Errort-Statistic Prob.
============================================================
C 3.222418 0.337739 9.541154 0.0000
TAX -0.274002 0.067616 -4.052302 0.0001
DRKAGE -0.035095 0.009525 -3.684584 0.0003
PCINC -0.196498 0.035992 -5.459494 0.0000
MILES 106.9708 9.091373 11.76618 0.0000
YNGDRV 1.486685 0.151822 9.792312 0.0000
INSP -0.076806 0.026530 -2.895037 0.0040
MORMON -0.804665 0.148464 -5.419917 0.0000
PROT -0.687807 0.146028 -4.710117 0.0000
CATH -0.523134 0.129111 -4.051817 0.0001
SOBAB -0.701809 0.247495 -2.835654 0.0049
WET 0.422053 0.184489 2.287683 0.0228
============================================================
Weighted Statistics
============================================================
R-squared 0.166752 Mean dependent var 4.018315
Adjusted R-squared 0.138463 S.D. dependent var 0.221887
S.E. of regression 0.205953 Akaike info criter-3.125154
Sum squared resid 13.74299 Schwarz criterion -2.988829
Log likelihood 60.26252 F-statistic 5.894548
Durbin-Watson stat 1.167913 Prob(F-statistic) 0.000000
============================================================
Unweighted Statistics
============================================================
R-squared 0.570406 Mean dependent var 4.025630
Adjusted R-squared 0.555821 S.D. dependent var 0.308939
S.E. of regression 0.205898 Sum squared resid 13.73565
Durbin-Watson stat 1.151230
============================================================
Auto Correlation Examples
============================================================
LS // Dependent Variable is YYY
Date: 04/18/98 Time: 14:38
Sample(adjusted): 2 500
Included observations: 499 after adjusting endpoints
============================================================
Variable CoefficienStd. Errort-Statistic Prob.
============================================================
C 2.039942 0.055456 36.78497 0.0000
X 2.019524 0.053867 37.49101 0.0000
============================================================
R-squared 0.738775 Mean dependent var 2.100864
Adjusted R-squared 0.738250 S.D. dependent var 2.420290
S.E. of regression 1.238258 Akaike info criter 0.431411
Sum squared resid 762.0415 Schwarz criterion 0.448295
Log likelihood -813.6873 F-statistic 1405.576
Durbin-Watson stat 0.850402 Prob(F-statistic) 0.000000
============================================================
Given the value of the Durban-Watson statistic, the first step is to try estimating the
first-order autocorrelation model. To do this in EVIEWS, use the command:
============================================================
LS // Dependent Variable is YYY
Date: 04/18/98 Time: 14:47
Sample(adjusted): 3 500
Included observations: 498 after adjusting endpoints
Convergence achieved after 4 iterations
============================================================
Variable CoefficienStd. Errort-Statistic Prob.
============================================================
C 2.029702 0.107408 18.89720 0.0000
X 1.976182 0.037777 52.31180 0.0000
AR(1) 0.576651 0.036850 15.64846 0.0000
============================================================
R-squared 0.823824 Mean dependent var 2.090885
Adjusted R-squared 0.823113 S.D. dependent var 2.412425
S.E. of regression 1.014617 Akaike info criter 0.035029
Sum squared resid 509.5768 Schwarz criterion 0.060394
Log likelihood -712.3535 F-statistic 1157.349
Durbin-Watson stat 2.029978 Prob(F-statistic) 0.000000
============================================================
Inverted AR Roots .58
============================================================
As a further check, we can run higher order AR models. For example, to add
a second-order autocorrelation issue the EVIEWS command:
============================================================
LS // Dependent Variable is YYY
Date: 04/18/98 Time: 14:51
Sample(adjusted): 4 500
Included observations: 497 after adjusting endpoints
Convergence achieved after 4 iterations
============================================================
Variable CoefficienStd. Errort-Statistic Prob.
============================================================
C 2.026031 0.111789 18.12370 0.0000
X 1.981206 0.038435 51.54703 0.0000
AR(1) 0.552113 0.045357 12.17258 0.0000
AR(2) 0.040334 0.045379 0.888813 0.3745
============================================================
R-squared 0.824106 Mean dependent var 2.093776
Adjusted R-squared 0.823036 S.D. dependent var 2.413992
S.E. of regression 1.015496 Akaike info criter 0.038769
Sum squared resid 508.3972 Schwarz criterion 0.072641
Log likelihood -710.8467 F-statistic 769.9438
Durbin-Watson stat 1.974323 Prob(F-statistic) 0.000000
============================================================
Inverted AR Roots .6 -.07
============================================================
To add a second-order and third-order autocorrelation terms issue the EVIEWS
command:
============================================================
LS // Dependent Variable is YYY
Date: 04/18/98 Time: 14:54
Sample(adjusted): 5 500
Included observations: 496 after adjusting endpoints
Convergence achieved after 4 iterations
============================================================
Variable CoefficienStd. Errort-Statistic Prob.
============================================================
C 2.033835 0.110996 18.32347 0.0000
X 1.981932 0.038471 51.51745 0.0000
AR(1) 0.554496 0.045383 12.21827 0.0000
AR(2) 0.050379 0.052013 0.968582 0.3332
AR(3) -0.015515 0.045462 -0.341276 0.7330
============================================================
R-squared 0.824542 Mean dependent var 2.099213
Adjusted R-squared 0.823113 S.D. dependent var 2.413381
S.E. of regression 1.015019 Akaike info criter 0.039843
Sum squared resid 505.8590 Schwarz criterion 0.082248
Log likelihood -708.6746 F-statistic 576.8487
Durbin-Watson stat 1.979999 Prob(F-statistic) 0.000000
============================================================
Inverted AR Roots .6 .14 -.18
============================================================
This second example is a two variable model with
first and second-order autocorrelation. The intercept and slope are both
equal to 2.0 and the autocorrelation parameters are .5 and .3 respectively.
============================================================
LS // Dependent Variable is YYYY
Date: 04/18/98 Time: 14:57
Sample: 1 500
Included observations: 500
============================================================
Variable CoefficienStd. Errort-Statistic Prob.
============================================================
C 2.127447 0.074982 28.37268 0.0000
X 2.089195 0.072906 28.65600 0.0000
============================================================
R-squared 0.622489 Mean dependent var 2.189925
Adjusted R-squared 0.621731 S.D. dependent var 2.724954
S.E. of regression 1.675945 Akaike info criter 1.036746
Sum squared resid 1398.778 Schwarz criterion 1.053604
Log likelihood -966.6557 F-statistic 821.1663
Durbin-Watson stat 0.463438 Prob(F-statistic) 0.000000
============================================================
First, try estimating first-order autocorrelation.
============================================================
LS // Dependent Variable is YYYY
Date: 04/18/98 Time: 14:59
Sample(adjusted): 2 500
Included observations: 499 after adjusting endpoints
Convergence achieved after 4 iterations
============================================================
Variable CoefficienStd. Errort-Statistic Prob.
============================================================
C 2.091612 0.214367 9.757170 0.0000
X 1.973435 0.036009 54.80381 0.0000
AR(1) 0.777316 0.028582 27.19551 0.0000
============================================================
R-squared 0.847857 Mean dependent var 2.187698
Adjusted R-squared 0.847244 S.D. dependent var 2.727233
S.E. of regression 1.065914 Akaike info criter 0.133659
Sum squared resid 563.5415 Schwarz criterion 0.158985
Log likelihood -738.3982 F-statistic 1382.045
Durbin-Watson stat 2.448294 Prob(F-statistic) 0.000000
============================================================
Inverted AR Roots .78
============================================================
Note that the
Durban-Watson is somewhat high. This is suspicious so the next step is to try
estimating the model with second-order autocorrelation.
============================================================
LS // Dependent Variable is YYYY
Date: 04/18/98 Time: 15:01
Sample(adjusted): 3 500
Included observations: 498 after adjusting endpoints
Convergence achieved after 5 iterations
============================================================
Variable CoefficienStd. Errort-Statistic Prob.
============================================================
C 2.062221 0.296098 6.964657 0.0000
X 2.002662 0.037604 53.25624 0.0000
AR(1) 0.537732 0.043203 12.44650 0.0000
AR(2) 0.308084 0.043190 7.133140 0.0000
============================================================
R-squared 0.860985 Mean dependent var 2.177893
Adjusted R-squared 0.860141 S.D. dependent var 2.721157
S.E. of regression 1.017651 Akaike info criter 0.042993
Sum squared resid 511.5928 Schwarz criterion 0.076813
Log likelihood -713.3367 F-statistic 1019.860
Durbin-Watson stat 1.951773 Prob(F-statistic) 0.000000
============================================================
Inverted AR Roots .8 -.35
============================================================
The model with first and second-order autocorrelation looks good.
The Durban-Watson statistic is near 2. To be cautious, check for a
third-order effect.
============================================================
LS // Dependent Variable is YYYY
Date: 04/18/98 Time: 15:02
Sample(adjusted): 4 500
Included observations: 497 after adjusting endpoints
Convergence achieved after 5 iterations
============================================================
Variable CoefficienStd. Errort-Statistic Prob.
============================================================
C 2.060181 0.279652 7.366943 0.0000
X 2.007865 0.037373 53.72512 0.0000
AR(1) 0.553574 0.045326 12.21324 0.0000
AR(2) 0.337364 0.049643 6.795838 0.0000
AR(3) -0.054397 0.045379 -1.198729 0.2312
============================================================
R-squared 0.861482 Mean dependent var 2.180052
Adjusted R-squared 0.860356 S.D. dependent var 2.723471
S.E. of regression 1.017734 Akaike info criter 0.045167
Sum squared resid 509.6051 Schwarz criterion 0.087507
Log likelihood -711.4364 F-statistic 764.9705
Durbin-Watson stat 1.981769 Prob(F-statistic) 0.000000
============================================================
Inverted AR Roots .8 .14 -.45
============================================================