Note Set 12 Handouts
Correlogram of Y0
==============================================================
Date: 04/18/98 Time: 15:09
Sample: 1 500
Included observations: 100
==============================================================
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
==============================================================
. |*** | . |*** | 1 0.401 0.401 16.566 0.000
. |*. | . | . | 2 0.147-0.016 18.817 0.000
. | . | . | . | 3 0.032-0.025 18.925 0.000
. | . | . | . | 4-0.044-0.055 19.132 0.001
. | . | . |*. | 5 0.058 0.118 19.488 0.002
==============================================================
In this example, the data are AR(1) but now the
parameter is .9.
Correlogram of Y1
==============================================================
Date: 04/18/98 Time: 15:22
Sample: 1 500
Included observations: 100
==============================================================
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
==============================================================
. |****** | . |****** | 1 0.752 0.752 58.201 0.000
. |**** | . | . | 2 0.588 0.052 94.132 0.000
. |**** | . |*. | 3 0.512 0.125 121.68 0.000
. |*** | . | . | 4 0.440 0.016 142.26 0.000
. |*** | . | . | 5 0.392 0.052 158.76 0.000
==============================================================
In this example the data are AR(2) with parameters .5
and .5.
Correlogram of Y2
==============================================================
Date: 04/18/98 Time: 15:56
Sample: 1 500
Included observations: 100
==============================================================
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
==============================================================
. |****** | . |****** | 1 0.800 0.800 65.963 0.000
. |****** | . |*** | 2 0.770 0.359 127.60 0.000
. |***** | . | . | 3 0.671-0.035 174.96 0.000
. |***** | . | . | 4 0.617 0.007 215.44 0.000
. |**** | . | . | 5 0.571 0.061 250.40 0.000
==============================================================
In this example, the data are AR(3) with parameters .8,
-.6, and .6.
Correlogram of Y3
==============================================================
Date: 04/18/98 Time: 15:58
Sample: 1 500
Included observations: 100
==============================================================
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
==============================================================
. |***** | . |***** | 1 0.612 0.612 38.583 0.000
. |** | .*| . | 2 0.265-0.175 45.909 0.000
. |*** | . |***** | 3 0.451 0.606 67.341 0.000
. |***** | . |*. | 4 0.653 0.188 112.70 0.000
. |*** | .*| . | 5 0.440-0.095 133.52 0.000
==============================================================
Now let us try and estimate a model based upon an examination of the
correlograms. The next correlogram is for a series (t=500) with parameters
.8, -.6, and .6 respectively. Fortunately for us, the PACF correlogram
indicates the presence of 3 lags.
Correlogram of Y
==============================================================
Date: 04/18/98 Time: 16:01
Sample: 1 500
Included observations: 500
==============================================================
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
==============================================================
.|**** | .|**** | 1 0.542 0.542 147.56 0.000
.|* | **|. | 2 0.145-0.210 158.13 0.000
.|*** | .|***** | 3 0.382 0.593 231.75 0.000
.|**** | *|. | 4 0.492-0.094 354.01 0.000
.|** | .|. | 5 0.203-0.007 374.99 0.000
==============================================================
Lets estimate AR(1), AR(2), and AR(3) models for this time series to see how
the coefficients behave.
============================================================
LS // Dependent Variable is Y
Date: 04/18/98 Time: 16:03
Sample(adjusted): 2 500
Included observations: 499 after adjusting endpoints
Convergence achieved after 3 iterations
============================================================
Variable CoefficienStd. Errort-Statistic Prob.
============================================================
C -0.261085 0.122331 -2.134245 0.0333
AR(1) 0.542895 0.037725 14.39070 0.0000
============================================================
R-squared 0.294127 Mean dependent var-0.263589
Adjusted R-squared 0.292706 S.D. dependent var 1.485259
S.E. of regression 1.249114 Akaike info criter 0.448870
Sum squared resid 775.4626 Schwarz criterion 0.465754
Log likelihood -818.0433 F-statistic 207.0922
Durbin-Watson stat 1.774118 Prob(F-statistic) 0.000000
============================================================
Inverted AR Roots .54
============================================================
In actual data work, you should always take a look at the residuals after
each model that you try. Go into the "View" menu and select "Residual Tests",
then select "Correlogram-Q-Statistics", then enter the number of lags (always
choose a number larger than the number of parameters being estimated!).
Correlogram of Residuals
==============================================================
Date: 04/18/98 Time: 16:06
Sample: 2 500
Included observations: 499
Q-statistic probabilities adjusted for 1 ARMA term(s)
==============================================================
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
==============================================================
.|* | .|* | 1 0.113 0.113 6.4002
***|. | ****|. | 2-0.442-0.460 104.53 0.000
.|** | .|*** | 3 0.213 0.434 127.40 0.000
.|*** | .|* | 4 0.450 0.140 229.75 0.000
.|. | .|* | 5-0.057 0.092 231.39 0.000
==============================================================
The residual correlogram for the AR(1) strongly indicates that adding terms
for second and third lags is appropriate. Beginning with the AR(2):
============================================================
LS // Dependent Variable is Y
Date: 04/18/98 Time: 16:13
Sample(adjusted): 3 500
Included observations: 498 after adjusting endpoints
Convergence achieved after 3 iterations
============================================================
Variable CoefficienStd. Errort-Statistic Prob.
============================================================
C -0.263769 0.099012 -2.664006 0.0080
AR(1) 0.655926 0.043956 14.92242 0.0000
AR(2) -0.209900 0.044168 -4.752335 0.0000
============================================================
R-squared 0.324915 Mean dependent var-0.263974
Adjusted R-squared 0.322187 S.D. dependent var 1.486728
S.E. of regression 1.224014 Akaike info criter 0.410277
Sum squared resid 741.6141 Schwarz criterion 0.435642
Log likelihood -805.7904 F-statistic 119.1204
Durbin-Watson stat 1.747068 Prob(F-statistic) 0.000000
============================================================
Inverted AR Roots .33 -. .33+.32i
============================================================
The residual correlogram from the AR(2) model is somewhat ambiguous but
clearly indicates that at least a third lag should be added to the model (here
the Q-Statistic has 5-2 = 3 degrees of freedom).
Correlogram of Residuals
==============================================================
Date: 04/18/98 Time: 16:14
Sample: 3 500
Included observations: 498
Q-statistic probabilities adjusted for 2 ARMA term(s)
==============================================================
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
==============================================================
.|* | .|* | 1 0.124 0.124 7.7243
**|. | ***|. | 2-0.303-0.324 53.926
.|** | .|**** | 3 0.318 0.463 104.68 0.000
.|*** | .|** | 4 0.449 0.246 206.21 0.000
.|. | .|* | 5-0.034 0.089 206.81 0.000
==============================================================
LS Y C AR(1) AR(2) AR(3)
============================================================
LS // Dependent Variable is Y
Date: 04/18/98 Time: 16:18
Sample(adjusted): 4 500
Included observations: 497 after adjusting endpoints
Convergence achieved after 3 iterations
============================================================
Variable CoefficienStd. Errort-Statistic Prob.
============================================================
C -0.220391 0.203460 -1.083211 0.2792
AR(1) 0.780235 0.036020 21.66122 0.0000
AR(2) -0.596923 0.042455 -14.05997 0.0000
AR(3) 0.600186 0.036243 16.55998 0.0000
============================================================
R-squared 0.566875 Mean dependent var-0.260287
Adjusted R-squared 0.564240 S.D. dependent var 1.485946
S.E. of regression 0.980905 Akaike info criter-0.030544
Sum squared resid 474.3520 Schwarz criterion 0.003328
Log likelihood -693.6223 F-statistic 215.0801
Durbin-Watson stat 1.879158 Prob(F-statistic) 0.000000
============================================================
Inverted AR Roots .8 -.05+.83i -.05 -.83i
============================================================
The correlogram of the residuals for the AR(3) model indicates
that we have the correct model (here the Q-Statistic has 5-3 = 2
degrees of freedom).
Correlogram of Residuals
==============================================================
Date: 04/18/98 Time: 16:19
Sample: 4 500
Included observations: 497
Q-statistic probabilities adjusted for 3 ARMA term(s)
==============================================================
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
==============================================================
.|. | .|. | 1 0.058 0.058 1.6800
.|. | .|. | 2 0.002-0.002 1.6815
.|. | .|. | 3 0.046 0.047 2.7651
.|. | .|. | 4-0.014-0.019 2.8634 0.091
.|. | .|. | 5-0.053-0.051 4.2867 0.117
==============================================================
Out of curiousity, we can add AR(4) and AR(5) terms just to see if
there are any effects.
LS Y C AR(1) AR(2) AR(3) AR(4) AR(5)
============================================================
LS // Dependent Variable is Y
Date: 04/18/98 Time: 16:23
Sample(adjusted): 6 500
Included observations: 495 after adjusting endpoints
Convergence achieved after 3 iterations
============================================================
Variable CoefficienStd. Errort-Statistic Prob.
============================================================
C -0.255278 0.184129 -1.386414 0.1663
AR(1) 0.832183 0.045099 18.45256 0.0000
AR(2) -0.638784 0.058633 -10.89461 0.0000
AR(3) 0.658227 0.058163 11.31699 0.0000
AR(4) -0.079692 0.058473 -1.362884 0.1735
AR(5) -0.010189 0.045168 -0.225574 0.8216
============================================================
R-squared 0.571043 Mean dependent var-0.267188
Adjusted R-squared 0.566657 S.D. dependent var 1.482234
S.E. of regression 0.975737 Akaike info criter-0.037078
Sum squared resid 465.5585 Schwarz criterion 0.013887
Log likelihood -687.1978 F-statistic 130.1948
Durbin-Watson stat 1.991752 Prob(F-statistic) 0.000000
============================================================
Inverted AR Roots .8 .23 -.08 -.08+.83i
-.08 -.83i
============================================================
Here is the correlogram of the residuals using 10 legs (the degrees
of freedom are 10-5 = 5). The AR(3) model is clearly the correct
model.
Correlogram of Residuals
==============================================================
Date: 04/18/98 Time: 16:24
Sample: 6 500
Included observations: 495
Q-statistic probabilities adjusted for 5 ARMA term(s)
==============================================================
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
==============================================================
.|. | .|. | 1 0.003 0.003 0.0045
.|. | .|. | 2-0.004-0.004 0.0121
.|. | .|. | 3 0.014 0.014 0.1077
.|. | .|. | 4 0.012 0.012 0.1814
.|. | .|. | 5 0.007 0.007 0.2037
.|. | .|. | 6-0.016-0.016 0.3263 0.568
.|. | .|. | 7-0.052-0.052 1.6984 0.428
.|. | .|. | 8-0.054-0.055 3.1814 0.364
.|. | .|. | 9 0.013 0.013 3.2622 0.515
.|. | .|. | 10 0.008 0.009 3.2923 0.655
==============================================================