Note Set 12 Handouts
Correlogram of Y0 ============================================================== Date: 04/18/98 Time: 15:09 Sample: 1 500 Included observations: 100 ============================================================== Autocorrelation Partial Correlation AC PAC Q-Stat Prob ============================================================== . |*** | . |*** | 1 0.401 0.401 16.566 0.000 . |*. | . | . | 2 0.147-0.016 18.817 0.000 . | . | . | . | 3 0.032-0.025 18.925 0.000 . | . | . | . | 4-0.044-0.055 19.132 0.001 . | . | . |*. | 5 0.058 0.118 19.488 0.002 ==============================================================In this example, the data are AR(1) but now the parameter is .9.
Correlogram of Y1 ============================================================== Date: 04/18/98 Time: 15:22 Sample: 1 500 Included observations: 100 ============================================================== Autocorrelation Partial Correlation AC PAC Q-Stat Prob ============================================================== . |****** | . |****** | 1 0.752 0.752 58.201 0.000 . |**** | . | . | 2 0.588 0.052 94.132 0.000 . |**** | . |*. | 3 0.512 0.125 121.68 0.000 . |*** | . | . | 4 0.440 0.016 142.26 0.000 . |*** | . | . | 5 0.392 0.052 158.76 0.000 ==============================================================In this example the data are AR(2) with parameters .5 and .5.
Correlogram of Y2 ============================================================== Date: 04/18/98 Time: 15:56 Sample: 1 500 Included observations: 100 ============================================================== Autocorrelation Partial Correlation AC PAC Q-Stat Prob ============================================================== . |****** | . |****** | 1 0.800 0.800 65.963 0.000 . |****** | . |*** | 2 0.770 0.359 127.60 0.000 . |***** | . | . | 3 0.671-0.035 174.96 0.000 . |***** | . | . | 4 0.617 0.007 215.44 0.000 . |**** | . | . | 5 0.571 0.061 250.40 0.000 ==============================================================In this example, the data are AR(3) with parameters .8, -.6, and .6.
Correlogram of Y3 ============================================================== Date: 04/18/98 Time: 15:58 Sample: 1 500 Included observations: 100 ============================================================== Autocorrelation Partial Correlation AC PAC Q-Stat Prob ============================================================== . |***** | . |***** | 1 0.612 0.612 38.583 0.000 . |** | .*| . | 2 0.265-0.175 45.909 0.000 . |*** | . |***** | 3 0.451 0.606 67.341 0.000 . |***** | . |*. | 4 0.653 0.188 112.70 0.000 . |*** | .*| . | 5 0.440-0.095 133.52 0.000 ==============================================================Now let us try and estimate a model based upon an examination of the correlograms. The next correlogram is for a series (t=500) with parameters .8, -.6, and .6 respectively. Fortunately for us, the PACF correlogram indicates the presence of 3 lags.
Correlogram of Y ============================================================== Date: 04/18/98 Time: 16:01 Sample: 1 500 Included observations: 500 ============================================================== Autocorrelation Partial Correlation AC PAC Q-Stat Prob ============================================================== .|**** | .|**** | 1 0.542 0.542 147.56 0.000 .|* | **|. | 2 0.145-0.210 158.13 0.000 .|*** | .|***** | 3 0.382 0.593 231.75 0.000 .|**** | *|. | 4 0.492-0.094 354.01 0.000 .|** | .|. | 5 0.203-0.007 374.99 0.000 ==============================================================Lets estimate AR(1), AR(2), and AR(3) models for this time series to see how the coefficients behave.
============================================================ LS // Dependent Variable is Y Date: 04/18/98 Time: 16:03 Sample(adjusted): 2 500 Included observations: 499 after adjusting endpoints Convergence achieved after 3 iterations ============================================================ Variable CoefficienStd. Errort-Statistic Prob. ============================================================ C -0.261085 0.122331 -2.134245 0.0333 AR(1) 0.542895 0.037725 14.39070 0.0000 ============================================================ R-squared 0.294127 Mean dependent var-0.263589 Adjusted R-squared 0.292706 S.D. dependent var 1.485259 S.E. of regression 1.249114 Akaike info criter 0.448870 Sum squared resid 775.4626 Schwarz criterion 0.465754 Log likelihood -818.0433 F-statistic 207.0922 Durbin-Watson stat 1.774118 Prob(F-statistic) 0.000000 ============================================================ Inverted AR Roots .54 ============================================================In actual data work, you should always take a look at the residuals after each model that you try. Go into the "View" menu and select "Residual Tests", then select "Correlogram-Q-Statistics", then enter the number of lags (always choose a number larger than the number of parameters being estimated!).
Correlogram of Residuals ============================================================== Date: 04/18/98 Time: 16:06 Sample: 2 500 Included observations: 499 Q-statistic probabilities adjusted for 1 ARMA term(s) ============================================================== Autocorrelation Partial Correlation AC PAC Q-Stat Prob ============================================================== .|* | .|* | 1 0.113 0.113 6.4002 ***|. | ****|. | 2-0.442-0.460 104.53 0.000 .|** | .|*** | 3 0.213 0.434 127.40 0.000 .|*** | .|* | 4 0.450 0.140 229.75 0.000 .|. | .|* | 5-0.057 0.092 231.39 0.000 ==============================================================The residual correlogram for the AR(1) strongly indicates that adding terms for second and third lags is appropriate. Beginning with the AR(2):
============================================================ LS // Dependent Variable is Y Date: 04/18/98 Time: 16:13 Sample(adjusted): 3 500 Included observations: 498 after adjusting endpoints Convergence achieved after 3 iterations ============================================================ Variable CoefficienStd. Errort-Statistic Prob. ============================================================ C -0.263769 0.099012 -2.664006 0.0080 AR(1) 0.655926 0.043956 14.92242 0.0000 AR(2) -0.209900 0.044168 -4.752335 0.0000 ============================================================ R-squared 0.324915 Mean dependent var-0.263974 Adjusted R-squared 0.322187 S.D. dependent var 1.486728 S.E. of regression 1.224014 Akaike info criter 0.410277 Sum squared resid 741.6141 Schwarz criterion 0.435642 Log likelihood -805.7904 F-statistic 119.1204 Durbin-Watson stat 1.747068 Prob(F-statistic) 0.000000 ============================================================ Inverted AR Roots .33 -. .33+.32i ============================================================The residual correlogram from the AR(2) model is somewhat ambiguous but clearly indicates that at least a third lag should be added to the model (here the Q-Statistic has 5-2 = 3 degrees of freedom).
Correlogram of Residuals ============================================================== Date: 04/18/98 Time: 16:14 Sample: 3 500 Included observations: 498 Q-statistic probabilities adjusted for 2 ARMA term(s) ============================================================== Autocorrelation Partial Correlation AC PAC Q-Stat Prob ============================================================== .|* | .|* | 1 0.124 0.124 7.7243 **|. | ***|. | 2-0.303-0.324 53.926 .|** | .|**** | 3 0.318 0.463 104.68 0.000 .|*** | .|** | 4 0.449 0.246 206.21 0.000 .|. | .|* | 5-0.034 0.089 206.81 0.000 ==============================================================LS Y C AR(1) AR(2) AR(3)
============================================================ LS // Dependent Variable is Y Date: 04/18/98 Time: 16:18 Sample(adjusted): 4 500 Included observations: 497 after adjusting endpoints Convergence achieved after 3 iterations ============================================================ Variable CoefficienStd. Errort-Statistic Prob. ============================================================ C -0.220391 0.203460 -1.083211 0.2792 AR(1) 0.780235 0.036020 21.66122 0.0000 AR(2) -0.596923 0.042455 -14.05997 0.0000 AR(3) 0.600186 0.036243 16.55998 0.0000 ============================================================ R-squared 0.566875 Mean dependent var-0.260287 Adjusted R-squared 0.564240 S.D. dependent var 1.485946 S.E. of regression 0.980905 Akaike info criter-0.030544 Sum squared resid 474.3520 Schwarz criterion 0.003328 Log likelihood -693.6223 F-statistic 215.0801 Durbin-Watson stat 1.879158 Prob(F-statistic) 0.000000 ============================================================ Inverted AR Roots .8 -.05+.83i -.05 -.83i ============================================================The correlogram of the residuals for the AR(3) model indicates that we have the correct model (here the Q-Statistic has 5-3 = 2 degrees of freedom).
Correlogram of Residuals ============================================================== Date: 04/18/98 Time: 16:19 Sample: 4 500 Included observations: 497 Q-statistic probabilities adjusted for 3 ARMA term(s) ============================================================== Autocorrelation Partial Correlation AC PAC Q-Stat Prob ============================================================== .|. | .|. | 1 0.058 0.058 1.6800 .|. | .|. | 2 0.002-0.002 1.6815 .|. | .|. | 3 0.046 0.047 2.7651 .|. | .|. | 4-0.014-0.019 2.8634 0.091 .|. | .|. | 5-0.053-0.051 4.2867 0.117 ==============================================================Out of curiousity, we can add AR(4) and AR(5) terms just to see if there are any effects. LS Y C AR(1) AR(2) AR(3) AR(4) AR(5)
============================================================ LS // Dependent Variable is Y Date: 04/18/98 Time: 16:23 Sample(adjusted): 6 500 Included observations: 495 after adjusting endpoints Convergence achieved after 3 iterations ============================================================ Variable CoefficienStd. Errort-Statistic Prob. ============================================================ C -0.255278 0.184129 -1.386414 0.1663 AR(1) 0.832183 0.045099 18.45256 0.0000 AR(2) -0.638784 0.058633 -10.89461 0.0000 AR(3) 0.658227 0.058163 11.31699 0.0000 AR(4) -0.079692 0.058473 -1.362884 0.1735 AR(5) -0.010189 0.045168 -0.225574 0.8216 ============================================================ R-squared 0.571043 Mean dependent var-0.267188 Adjusted R-squared 0.566657 S.D. dependent var 1.482234 S.E. of regression 0.975737 Akaike info criter-0.037078 Sum squared resid 465.5585 Schwarz criterion 0.013887 Log likelihood -687.1978 F-statistic 130.1948 Durbin-Watson stat 1.991752 Prob(F-statistic) 0.000000 ============================================================ Inverted AR Roots .8 .23 -.08 -.08+.83i -.08 -.83i ============================================================Here is the correlogram of the residuals using 10 legs (the degrees of freedom are 10-5 = 5). The AR(3) model is clearly the correct model.
Correlogram of Residuals ============================================================== Date: 04/18/98 Time: 16:24 Sample: 6 500 Included observations: 495 Q-statistic probabilities adjusted for 5 ARMA term(s) ============================================================== Autocorrelation Partial Correlation AC PAC Q-Stat Prob ============================================================== .|. | .|. | 1 0.003 0.003 0.0045 .|. | .|. | 2-0.004-0.004 0.0121 .|. | .|. | 3 0.014 0.014 0.1077 .|. | .|. | 4 0.012 0.012 0.1814 .|. | .|. | 5 0.007 0.007 0.2037 .|. | .|. | 6-0.016-0.016 0.3263 0.568 .|. | .|. | 7-0.052-0.052 1.6984 0.428 .|. | .|. | 8-0.054-0.055 3.1814 0.364 .|. | .|. | 9 0.013 0.013 3.2622 0.515 .|. | .|. | 10 0.008 0.009 3.2923 0.655 ==============================================================