ARIMA Examples (Part 1)
Correlogram of Y1 ============================================================== Date: 04/21/98 Time: 16:42 Sample: 1 100 Included observations: 100 ============================================================== Autocorrelation Partial Correlation AC PAC Q-Stat Prob ============================================================== . |*** | . |*** | 1 0.444 0.444 20.306 0.000 ***| . | ******| . | 2-0.431-0.782 39.652 0.000 *****| . | . |** | 3-0.603 0.275 77.871 0.000 .*| . | ***| . | 4-0.153-0.345 80.352 0.000 . |** | . |** | 5 0.302 0.319 90.148 0.000 ==============================================================This pattern is somewhat ambiguous but clearly we have multiple terms present. Lets be conservative and start off by estimating up to a MA(2).
============================================================ LS // Dependent Variable is Y1 Date: 04/21/98 Time: 16:44 Sample: 1 100 Included observations: 100 Convergence achieved after 23 iterations ============================================================ Variable CoefficienStd. Errort-Statistic Prob. ============================================================ C 0.067147 0.239710 0.280117 0.7800 MA(1) 0.835517 0.032102 26.02710 0.0000 MA(2) -0.152868 0.002619 -58.37944 0.0000 ============================================================ R-squared 0.574891 Mean dependent var 0.150504 Adjusted R-squared 0.566126 S.D. dependent var 2.163285 S.E. of regression 1.424937 Akaike info criter 0.737796 Sum squared resid 196.9532 Schwarz criterion 0.815951 Log likelihood -175.7836 F-statistic 65.58840 Durbin-Watson stat 1.284884 Prob(F-statistic) 0.000000 ============================================================ Inverted MA Roots .1 -.99 ============================================================ Correlogram of Residuals ============================================================== Date: 04/21/98 Time: 16:45 Sample: 1 100 Included observations: 100 Q-statistic probabilities adjusted for 2 ARMA term(s) ============================================================== Autocorrelation Partial Correlation AC PAC Q-Stat Prob ============================================================== . |*** | . |*** | 1 0.356 0.356 13.034 ***| . | *****| . | 2-0.430-0.637 32.265 ****| . | .*| . | 3-0.551-0.143 64.209 0.000 .*| . | . | . | 4-0.100-0.032 65.265 0.000 . |** | .*| . | 5 0.269-0.080 73.037 0.000 ==============================================================Clearly we are not done yet. The two spikes in the PACF graph suggest--now that we have MA(1) and MA(2) terms--that we should add AR(1) and AR(2) terms to the model.
============================================================ LS // Dependent Variable is Y1 Date: 04/21/98 Time: 16:46 Sample(adjusted): 3 100 Included observations: 98 after adjusting endpoints Convergence achieved after 11 iterations ============================================================ Variable CoefficienStd. Errort-Statistic Prob. ============================================================ C 0.162320 0.138851 1.169027 0.2454 AR(1) 0.702614 0.111219 6.317390 0.0000 AR(2) -0.687793 0.077228 -8.905977 0.0000 MA(1) 0.603438 0.149147 4.045922 0.0001 MA(2) -0.294895 0.146821 -2.008535 0.0475 ============================================================ R-squared 0.784079 Mean dependent var 0.156682 Adjusted R-squared 0.774793 S.D. dependent var 2.182691 S.E. of regression 1.035819 Akaike info criter 0.120057 Sum squared resid 99.78159 Schwarz criterion 0.251943 Log likelihood -139.9388 F-statistic 84.42848 Durbin-Watson stat 2.014543 Prob(F-statistic) 0.000000 ============================================================ Inverted AR Roots .35+.7 .35 -.75i Inverted MA Roots .3 -.92 ============================================================ Correlogram of Residuals ============================================================== Date: 04/21/98 Time: 16:47 Sample: 3 100 Included observations: 98 Q-statistic probabilities adjusted for 4 ARMA term(s) ============================================================== Autocorrelation Partial Correlation AC PAC Q-Stat Prob ============================================================== . | . | . | . | 1-0.009-0.009 0.0075 . | . | . | . | 2-0.017-0.017 0.0365 . | . | . | . | 3-0.014-0.015 0.0577 . |*. | . |*. | 4 0.121 0.121 1.5919 .*| . | .*| . | 5-0.136-0.136 3.5300 0.060 . | . | . | . | 6 0.040 0.046 3.7045 0.157 . | . | . | . | 7-0.018-0.021 3.7402 0.291 . | . | . | . | 8 0.038 0.022 3.8937 0.421 .*| . | . | . | 9-0.085-0.054 4.6849 0.456 .*| . | .*| . | 10-0.137-0.170 6.7816 0.342 ==============================================================This looks pretty good. All the p-values (except for the 5-lag Q-Statistic which has only 1 degree of freedom) are reasonable.
Correlogram of Y2 ============================================================== Date: 04/21/98 Time: 16:51 Sample: 1 100 Included observations: 100 ============================================================== Autocorrelation Partial Correlation AC PAC Q-Stat Prob ============================================================== . |****** | . |****** | 1 0.728 0.728 54.619 0.000 . |*. | *******| . | 2 0.093-0.931 55.510 0.000 ****| . | **| . | 3-0.563-0.247 88.888 0.000 *******| . | . |*. | 4-0.891 0.093 173.25 0.000 ******| . | .*| . | 5-0.745-0.167 232.86 0.000 ==============================================================The pattern is once again ambiguous. I am inclined to start once again by estimating MA terms. Given the absence of a spike at MA(2), I am going to first estimate MA(1) and MA(3) terms.
============================================================ LS // Dependent Variable is Y2 Date: 04/21/98 Time: 16:52 Sample: 1 100 Included observations: 100 Convergence achieved after 14 iterations ============================================================ Variable CoefficienStd. Errort-Statistic Prob. ============================================================ C -0.428425 0.387856 -1.104597 0.2721 MA(1) 0.958552 0.023630 40.56466 0.0000 MA(3) -0.608096 0.000476 -1277.001 0.0000 ============================================================ R-squared 0.749535 Mean dependent var-0.466657 Adjusted R-squared 0.744370 S.D. dependent var 5.677772 S.E. of regression 2.870672 Akaike info criter 2.138633 Sum squared resid 799.3532 Schwarz criterion 2.216788 Log likelihood -245.8255 F-statistic 145.1396 Durbin-Watson stat 0.664071 Prob(F-statistic) 0.000000 ============================================================ Inverted MA Roots .6 -.79+.60i -.79 -.60i ============================================================ Correlogram of Residuals ============================================================== Date: 04/21/98 Time: 16:53 Sample: 1 100 Included observations: 100 Q-statistic probabilities adjusted for 2 ARMA term(s) ============================================================== Autocorrelation Partial Correlation AC PAC Q-Stat Prob ============================================================== . |***** | . |***** | 1 0.655 0.655 44.146 . |*. | ****| . | 2 0.128-0.525 45.860 ****| . | ******| . | 3-0.514-0.721 73.657 0.000 *******| . | ***| . | 4-0.843-0.391 149.21 0.000 *****| . | . |*** | 5-0.680 0.365 198.85 0.000 ==============================================================Given that we have estimated MA(1) and MA(3) terms, the PACFs indicate that we should try at least AR(1) and AR(3). Given the spike at the 2nd PACF lets add that in too.
============================================================ LS // Dependent Variable is Y2 Date: 04/21/98 Time: 16:54 Sample(adjusted): 4 100 Included observations: 97 after adjusting endpoints Convergence achieved after 10 iterations ============================================================ Variable CoefficienStd. Errort-Statistic Prob. ============================================================ C -0.354521 0.157481 -2.251192 0.0268 AR(1) 0.543147 0.063835 8.508590 0.0000 AR(2) 0.358374 0.087511 4.095176 0.0001 AR(3) -0.919271 0.063529 -14.47018 0.0000 MA(1) 0.868996 0.089440 9.715997 0.0000 MA(3) -0.123682 0.083465 -1.481841 0.1418 ============================================================ R-squared 0.976675 Mean dependent var-0.483771 Adjusted R-squared 0.975394 S.D. dependent var 5.763586 S.E. of regression 0.904100 Akaike info criter-0.141770 Sum squared resid 74.38316 Schwarz criterion 0.017490 Log likelihood -124.7612 F-statistic 762.0856 Durbin-Watson stat 2.051030 Prob(F-statistic) 0.000000 ============================================================ Inverted AR Roots .73+.6 .73 -.68 -.92 Inverted MA Roots .3 -.60 -.17 -.60+.17i ============================================================ Correlogram of Residuals ============================================================== Date: 04/21/98 Time: 16:55 Sample: 4 100 Included observations: 97 Q-statistic probabilities adjusted for 5 ARMA term(s) ============================================================== Autocorrelation Partial Correlation AC PAC Q-Stat Prob ============================================================== . | . | . | . | 1-0.040-0.040 0.1581 . | . | . | . | 2 0.036 0.034 0.2874 .*| . | .*| . | 3-0.064-0.062 0.7108 . | . | . | . | 4 0.057 0.051 1.0463 . |*. | . |*. | 5 0.090 0.099 1.8878 . | . | . | . | 6-0.043-0.044 2.0815 0.149 . |*. | . |*. | 7 0.142 0.142 4.2181 0.121 . |*. | . |*. | 8 0.101 0.127 5.3290 0.149 .*| . | .*| . | 9-0.060-0.082 5.7267 0.221 . | . | . | . | 10 0.002 0.006 5.7271 0.334 ==============================================================We have white noise and the MA(3) term is not significant. This suggests that we try dropping it and see if a simplier model works just as well.
============================================================ LS // Dependent Variable is Y2 Date: 04/21/98 Time: 16:57 Sample(adjusted): 4 100 Included observations: 97 after adjusting endpoints Convergence achieved after 11 iterations ============================================================ Variable CoefficienStd. Errort-Statistic Prob. ============================================================ C -0.358680 0.162995 -2.200559 0.0303 AR(1) 0.523056 0.054485 9.600060 0.0000 AR(2) 0.384275 0.073637 5.218478 0.0000 AR(3) -0.940735 0.052948 -17.76712 0.0000 MA(1) 0.818634 0.089641 9.132368 0.0000 ============================================================ R-squared 0.975970 Mean dependent var-0.483771 Adjusted R-squared 0.974925 S.D. dependent var 5.763586 S.E. of regression 0.912671 Akaike info criter-0.132588 Sum squared resid 76.63316 Schwarz criterion 0.000129 Log likelihood -126.2065 F-statistic 934.1233 Durbin-Watson stat 1.924115 Prob(F-statistic) 0.000000 ============================================================ Inverted AR Roots .73 -. .73+.68i -.94 Inverted MA Roots -.82 ============================================================ Correlogram of Residuals ============================================================== Date: 04/21/98 Time: 16:57 Sample: 4 100 Included observations: 97 Q-statistic probabilities adjusted for 4 ARMA term(s) ============================================================== Autocorrelation Partial Correlation AC PAC Q-Stat Prob ============================================================== . | . | . | . | 1 0.021 0.021 0.0461 . | . | . | . | 2-0.029-0.029 0.1310 .*| . | .*| . | 3-0.135-0.134 1.9965 . |*. | . |*. | 4 0.122 0.129 3.5240 . | . | . | . | 5 0.024 0.011 3.5859 0.058 . | . | . | . | 6 0.000-0.013 3.5859 0.166 . |*. | . |*. | 7 0.101 0.142 4.6840 0.196 . |*. | . |*. | 8 0.133 0.120 6.6018 0.158 .*| . | .*| . | 9-0.096-0.112 7.6122 0.179 . | . | . | . | 10-0.018 0.031 7.6495 0.265 ==============================================================This looks pretty good. Only the Q-Statistic at 5 lags and 1 degree of freedom has a p-value below .1. The adjusted r-square is essentially unchanged when we drop the MA(3) term so this is our preferred model.
Correlogram of Y3 ============================================================== Date: 04/21/98 Time: 17:09 Sample: 1 100 Included observations: 100 ============================================================== Autocorrelation Partial Correlation AC PAC Q-Stat Prob ============================================================== ******| . | ******| . | 1-0.723-0.723 53.804 0.000 . |*******| . |****** | 2 0.897 0.785 137.60 0.000 *****| . | . |*. | 3-0.672 0.190 185.08 0.000 . |****** | . |** | 4 0.835 0.209 259.19 0.000 *****| . | . | . | 5-0.635 0.051 302.54 0.000 ==============================================================Given the big spikes in the first two positions of both plots lets try starting again with MA(1) and MA(2) and see where it leads us.
============================================================ LS // Dependent Variable is Y3 Date: 04/21/98 Time: 17:10 Sample: 1 100 Included observations: 100 Convergence achieved after 20 iterations ============================================================ Variable CoefficienStd. Errort-Statistic Prob. ============================================================ C -0.174127 0.154511 -1.126956 0.2625 MA(1) -0.645419 0.055408 -11.64849 0.0000 MA(2) 0.720077 0.066320 10.85755 0.0000 ============================================================ R-squared 0.640556 Mean dependent var-0.191290 Adjusted R-squared 0.633144 S.D. dependent var 2.389969 S.E. of regression 1.447571 Akaike info criter 0.769315 Sum squared resid 203.2598 Schwarz criterion 0.847470 Log likelihood -177.3596 F-statistic 86.43050 Durbin-Watson stat 2.123049 Prob(F-statistic) 0.000000 ============================================================ Inverted MA Roots .32+.7 .32 -.78i ============================================================ Correlogram of Residuals ============================================================== Date: 04/21/98 Time: 17:10 Sample: 1 100 Included observations: 100 Q-statistic probabilities adjusted for 2 ARMA term(s) ============================================================== Autocorrelation Partial Correlation AC PAC Q-Stat Prob ============================================================== .*| . | .*| . | 1-0.062-0.062 0.4013 . |**** | . |**** | 2 0.486 0.484 25.018 **| . | ***| . | 3-0.290-0.320 33.867 0.000 . |***** | . |***** | 4 0.645 0.629 78.089 0.000 . | . | . |*. | 5-0.029 0.110 78.178 0.000 ==============================================================Given the big spike at the 2nd lag, lets try adding an AR(2) term.
============================================================ LS // Dependent Variable is Y3 Date: 04/21/98 Time: 17:12 Sample(adjusted): 3 100 Included observations: 98 after adjusting endpoints Convergence achieved after 11 iterations ============================================================ Variable CoefficienStd. Errort-Statistic Prob. ============================================================ C -0.174180 0.792690 -0.219734 0.8266 AR(2) 0.929372 0.045696 20.33793 0.0000 MA(1) -0.307308 0.103296 -2.975027 0.0037 MA(2) -0.097869 0.113819 -0.859866 0.3921 ============================================================ R-squared 0.857380 Mean dependent var-0.216506 Adjusted R-squared 0.852829 S.D. dependent var 2.404179 S.E. of regression 0.922313 Akaike info criter-0.121781 Sum squared resid 79.96218 Schwarz criterion -0.016272 Log likelihood -129.0887 F-statistic 188.3652 Durbin-Watson stat 1.954877 Prob(F-statistic) 0.000000 ============================================================ Inverted AR Roots .9 -.96 Inverted MA Roots .5 -.19 ============================================================ Correlogram of Residuals ============================================================== Date: 04/21/98 Time: 17:12 Sample: 3 100 Included observations: 98 Q-statistic probabilities adjusted for 3 ARMA term(s) ============================================================== Autocorrelation Partial Correlation AC PAC Q-Stat Prob ============================================================== . | . | . | . | 1 0.006 0.006 0.0039 . | . | . | . | 2-0.044-0.044 0.2028 . | . | . | . | 3 0.054 0.054 0.5012 . |*. | . |*. | 4 0.110 0.107 1.7560 0.185 . |*. | . |*. | 5 0.144 0.149 3.9264 0.140 . | . | . | . | 6-0.015-0.007 3.9495 0.267 . | . | . | . | 7-0.034-0.034 4.0709 0.396 . |*. | . |*. | 8 0.128 0.102 5.8653 0.320 . | . | . | . | 9-0.012-0.045 5.8800 0.437 . |*. | . |*. | 10 0.073 0.071 6.4753 0.485 ==============================================================This gives us white noise. However, the MA(2) term is now insignificant. Lets try dropping it:
============================================================ LS // Dependent Variable is Y3 Date: 04/21/98 Time: 17:13 Sample(adjusted): 3 100 Included observations: 98 after adjusting endpoints Convergence achieved after 7 iterations ============================================================ Variable CoefficienStd. Errort-Statistic Prob. ============================================================ C -0.183495 0.659115 -0.278396 0.7813 AR(2) 0.910669 0.045020 20.22829 0.0000 MA(1) -0.371488 0.095248 -3.900233 0.0002 ============================================================ R-squared 0.856361 Mean dependent var-0.216506 Adjusted R-squared 0.853337 S.D. dependent var 2.404179 S.E. of regression 0.920720 Akaike info criter-0.135064 Sum squared resid 80.53393 Schwarz criterion -0.055933 Log likelihood -129.4378 F-statistic 283.1891 Durbin-Watson stat 1.871770 Prob(F-statistic) 0.000000 ============================================================ Inverted AR Roots .9 -.95 Inverted MA Roots .37 ============================================================ Correlogram of Residuals ============================================================== Date: 04/21/98 Time: 17:13 Sample: 3 100 Included observations: 98 Q-statistic probabilities adjusted for 2 ARMA term(s) ============================================================== Autocorrelation Partial Correlation AC PAC Q-Stat Prob ============================================================== . | . | . | . | 1 0.050 0.050 0.2477 .*| . | .*| . | 2-0.107-0.109 1.4086 . | . | . | . | 3 0.014 0.025 1.4281 0.232 . |*. | . |*. | 4 0.130 0.118 3.1917 0.203 . |*. | . |*. | 5 0.135 0.130 5.1263 0.163 . | . | . | . | 6-0.016-0.003 5.1524 0.272 . | . | . | . | 7-0.044-0.023 5.3645 0.373 . |*. | . |*. | 8 0.130 0.115 7.1965 0.303 . | . | . | . | 9 0.005-0.045 7.1993 0.408 . | . | . |*. | 10 0.065 0.082 7.6734 0.466 ==============================================================Very often more than one model will fit a time series equally well. After considerable experimentation with various models I found that ARIMA(1,0,3) model worked very well for this series.
============================================================ LS // Dependent Variable is Y3 Date: 04/21/98 Time: 17:18 Sample(adjusted): 5 100 Included observations: 96 after adjusting endpoints Convergence achieved after 12 iterations ============================================================ Variable CoefficienStd. Errort-Statistic Prob. ============================================================ C -0.188639 0.595493 -0.316778 0.7521 AR(4) 0.804694 0.072112 11.15901 0.0000 MA(1) -0.292846 0.086185 -3.397900 0.0010 MA(2) 0.791667 0.072370 10.93920 0.0000 MA(3) -0.270966 0.085920 -3.153713 0.0022 ============================================================ R-squared 0.859192 Mean dependent var-0.226304 Adjusted R-squared 0.853003 S.D. dependent var 2.428292 S.E. of regression 0.931011 Akaike info criter-0.092289 Sum squared resid 78.87720 Schwarz criterion 0.041270 Log likelihood -126.7882 F-statistic 138.8180 Durbin-Watson stat 2.069957 Prob(F-statistic) 0.000000 ============================================================ Inverted AR Roots .9 .00 -.95 .00+.95i -.95 Inverted MA Roots .3 -.02 -.90 -.02+.90i ============================================================ Correlogram of Residuals ============================================================== Date: 04/21/98 Time: 17:19 Sample: 5 100 Included observations: 96 Q-statistic probabilities adjusted for 4 ARMA term(s) ============================================================== Autocorrelation Partial Correlation AC PAC Q-Stat Prob ============================================================== . | . | . | . | 1-0.039-0.039 0.1513 . | . | . | . | 2-0.011-0.013 0.1634 . | . | . | . | 3 0.029 0.028 0.2505 . |*. | . |*. | 4 0.072 0.074 0.7827 . |*. | . |*. | 5 0.090 0.097 1.6197 0.203 . | . | . | . | 6 0.000 0.009 1.6197 0.445 . | . | . | . | 7-0.051-0.054 1.8963 0.594 . |*. | . |*. | 8 0.087 0.072 2.7091 0.608 . | . | . | . | 9-0.040-0.049 2.8817 0.718 . |*. | . |*. | 10 0.145 0.141 5.1813 0.521 ==============================================================