ARIMA Examples (Part 2)
Correlogram of YY5
==============================================================
Date: 04/28/98 Time: 14:07
Sample: 1 100
Included observations: 100
==============================================================
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
==============================================================
. |*******| . |*******| 1 0.960 0.960 94.948 0.000
. |*******| .*| . | 2 0.916-0.069 182.30 0.000
. |*******| . | . | 3 0.875 0.014 262.81 0.000
. |****** | . | . | 4 0.834-0.025 336.69 0.000
. |****** | . | . | 5 0.790-0.055 403.72 0.000
==============================================================
This pattern indicates a nonstationary series. Taking the first
differences the Correlogram is:
Correlogram of YY5-YY5(-1)
==============================================================
Date: 04/28/98 Time: 14:09
Sample: 1 100
Included observations: 99
==============================================================
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
==============================================================
. |*** | . |*** | 1 0.394 0.394 15.823 0.000
.*| . | **| . | 2-0.059-0.254 16.185 0.000
. |*. | . |** | 3 0.120 0.316 17.692 0.001
. | . | **| . | 4 0.023-0.274 17.747 0.001
.*| . | . |*. | 5-0.065 0.180 18.190 0.003
==============================================================
The series now appears to be stationary. The spikes at one lag in the
ACF and PACF indicate that we should first try a simple MA(1) model. (Note
that we can use the D(.) operator built into EVIEWS to do the first
differencing; that is:
============================================================
LS // Dependent Variable is D(YY5)
Date: 04/28/98 Time: 14:58
Sample(adjusted): 2 100
Included observations: 99 after adjusting endpoints
Convergence achieved after 7 iterations
============================================================
Variable CoefficienStd. Errort-Statistic Prob.
============================================================
C 0.504227 0.188794 2.670780 0.0089
MA(1) 0.801583 0.060328 13.28703 0.0000
============================================================
R-squared 0.343359 Mean dependent var 0.500937
Adjusted R-squared 0.336589 S.D. dependent var 1.281686
S.E. of regression 1.043934 Akaike info criter 0.105987
Sum squared resid 105.7104 Schwarz criterion 0.158414
Log likelihood -143.7213 F-statistic 50.72140
Durbin-Watson stat 2.146790 Prob(F-statistic) 0.000000
============================================================
Inverted MA Roots -.80
============================================================
The Correlogram of the residuals is:
Correlogram of Residuals
==============================================================
Date: 04/28/98 Time: 14:12
Sample: 2 100
Included observations: 99
Q-statistic probabilities adjusted for 1 ARMA term(s)
==============================================================
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
==============================================================
.*| . | .*| . | 1-0.074-0.074 0.5595
.*| . | .*| . | 2-0.094-0.100 1.4615 0.227
. |*. | . |*. | 3 0.153 0.140 3.8927 0.143
. | . | . | . | 4 0.003 0.016 3.8934 0.273
.*| . | .*| . | 5-0.120-0.096 5.4250 0.246
==============================================================
The p-values are all large so we cannot reject the null hypothesis
that the residuals are white noise.


Note the pattern below of the ACFs and PACFs:
Correlogram of RGNP
==============================================================
Date: 04/28/98 Time: 15:46
Sample: 1 180
Included observations: 167
==============================================================
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
==============================================================
.|******** .|******** 1 0.980 0.980 163.34 0.000
.|*******| .|. | 2 0.960-0.018 320.97 0.000
.|*******| .|. | 3 0.940-0.015 472.91 0.000
.|*******| .|. | 4 0.919-0.007 619.26 0.000
.|*******| .|. | 5 0.900 0.002 760.25 0.000
==============================================================
The appropriate fixup here is to take the first difference of the logs
of real GNP. You can do this by using the DLOG(.) command in EVIEWS
which computes the first difference in the natural logs. That is:
DLOG(RGNP) = LOG(RGNP) - LOG(RGNP(-1))
Correlogram of DLOG(RGNP)
==============================================================
Date: 04/28/98 Time: 15:51
Sample: 1 180
Included observations: 166
==============================================================
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
==============================================================
.|*** | .|*** | 1 0.370 0.370 23.170 0.000
.|** | .|* | 2 0.249 0.130 33.743 0.000
.|. | *|. | 3 0.000-0.151 33.743 0.000
*|. | *|. | 4-0.102-0.109 35.525 0.000
*|. | .|. | 5-0.117-0.019 37.899 0.000
==============================================================
The ACFs and PACFs and the graph of the transformed time series offer
solid evidence that we have a stationary time series. The spikes in the
first lag indicates that we should try a MA(1) model first.
LS DLOG(RGNP) C MA(1)
============================================================
LS // Dependent Variable is DLOG(RGNP)
Date: 04/28/98 Time: 15:55
Sample(adjusted): 2 167
Included observations: 166 after adjusting endpoints
Convergence achieved after 10 iterations
============================================================
Variable CoefficienStd. Errort-Statistic Prob.
============================================================
C 0.008031 0.001019 7.877449 0.0000
MA(1) 0.268213 0.075216 3.565924 0.0005
============================================================
R-squared 0.098695 Mean dependent var 0.008034
Adjusted R-squared 0.093200 S.D. dependent var 0.010885
S.E. of regression 0.010365 Akaike info criter-9.126620
Sum squared resid 0.017620 Schwarz criterion -9.089126
Log likelihood 523.9656 F-statistic 17.95845
Durbin-Watson stat 1.859536 Prob(F-statistic) 0.000038
============================================================
Inverted MA Roots -.27
============================================================
Correlogram of Residuals
==============================================================
Date: 04/28/98 Time: 15:55
Sample: 2 167
Included observations: 166
Q-statistic probabilities adjusted for 1 ARMA term(s)
==============================================================
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
==============================================================
.|* | .|* | 1 0.070 0.070 0.8294
.|** | .|** | 2 0.252 0.248 11.613 0.001
.|. | *|. | 3-0.045-0.081 11.958 0.003
*|. | *|. | 4-0.071-0.135 12.823 0.005
*|. | .|. | 5-0.093-0.054 14.335 0.006
==============================================================
The spike at the second lag of the ACF and PACF suggests adding a
MA(2) term to the model.
LS DLOG(RGNP) C MA(1) MA(2)
============================================================
LS // Dependent Variable is DLOG(RGNP)
Date: 04/28/98 Time: 15:57
Sample(adjusted): 2 167
Included observations: 166 after adjusting endpoints
Convergence achieved after 7 iterations
============================================================
Variable CoefficienStd. Errort-Statistic Prob.
============================================================
C 0.008027 0.001224 6.557310 0.0000
MA(1) 0.304527 0.075294 4.044511 0.0001
MA(2) 0.274132 0.075290 3.641029 0.0004
============================================================
R-squared 0.165012 Mean dependent var 0.008034
Adjusted R-squared 0.154767 S.D. dependent var 0.010885
S.E. of regression 0.010007 Akaike info criter-9.190997
Sum squared resid 0.016323 Schwarz criterion -9.134756
Log likelihood 530.3090 F-statistic 16.10617
Durbin-Watson stat 1.949344 Prob(F-statistic) 0.000000
============================================================
Inverted MA Roots -.15 -. -.15+.50i
============================================================
Correlogram of Residuals
==============================================================
Date: 04/28/98 Time: 15:57
Sample: 2 167
Included observations: 166
Q-statistic probabilities adjusted for 2 ARMA term(s)
==============================================================
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
==============================================================
.|. | .|. | 1 0.025 0.025 0.1079
.|. | .|. | 2 0.018 0.017 0.1626
.|. | .|. | 3 0.044 0.043 0.4910 0.483
*|. | *|. | 4-0.084-0.087 1.7072 0.426
*|. | *|. | 5-0.116-0.114 4.0405 0.257
==============================================================
The p-values are quite large so we do not reject the null hypothesis
that we have white noise. This appears to be the correct model.
To forecast Real GNP through 1991 first expand the series and change the
sample range:
EXPAND 180
SMPL 168 180
Now go to the "Forecast" window and make up a name for the standard error
series. Clicking "OK" produces the following plot:

To look at the original series and the forecast issue the commands:
SMPL 1 180
PLOT RGNPF RGNP
