LEGACY CONTENT. If you are looking for Voteview.com, PLEASE CLICK HERE

This site is an archived version of Voteview.com archived from University of Georgia on May 23, 2017. This point-in-time capture includes all files publicly linked on Voteview.com at that time. We provide access to this content as a service to ensure that past users of Voteview.com have access to historical files. This content will remain online until at least January 1st, 2018. UCLA provides no warranty or guarantee of access to these files.

45-734 PROBABILITY AND STATISTICS II Homework Answers #2 (4th Mini AY1997-98)



    1.                         _          _
         Xi         Yi    Xi - Xn   (Xi - Xn)2    ki    
        ---------------------------------------------------
         0         -2       -2         4      -2/10 = -.200     
         1         -1       -1         1      -1/10 = -.100      
         2          1        0         0          0 =  .000      
         3          1        1         1       1/10 =  .100      
         4          1        2         4       2/10 =  .200    
        ---------------------------------------------------
        10          0        0        10       0/10 =  .000
      
      From the Table:

      åi=1,5 ki = 0

      åi=1,5 kixi = (-2/10)*0+(-1/10)*1+(0)*2+(1/10)*3+(2/10)*4 = 1

                                _
      åi=1,5 ki2 = 1/[åi=1,5 (xi - Xn)2] = 1/10 =
                = (-2/10)2  + (-1/10)2 + (0)2 + (1/10)2 + (2/10)2 = 
                = 10/100 = 1/10 = .100
      
    2. ^
      b1  = åi=1,5 kiyi
          = (-2/10)*-2 + (-1/10)*-1 + (0)*1 + (1/10)*1 + (2/10)*1
          = (4+1+0+1+2)/10 = .800
      ^     _   ^ _
      b0  = y - b1X = 0 - (8/10)*2 = -16/10 = -1.6
      
    3. and d. The estimated equation is:
                                ^
         yi  = -1.6 + .800*xi + ei
      Which produces the fitted values:
         ^ 
         yi  = -1.6 + .800*xi
      and the estimated residuals
              ^         ^
         ei = ei = yi - yi = yi + 1.6 - .800*xi
      
      This produces the table
      
                      ^              ^                   _
       xi     yi      yi    ei = yi - yi     eixi     yi - y
      ----------------------------------------------------
       0     -2     -1.6      -.400         0.0       -2
       1     -1     - .8      -.200         -.2       -1
       2      1      0.0      1.000         2.0        1
       3      1       .8       .200          .6        1
       4      1      1.6      -.600        -2.4        1
      ----------------------------------------------------
      10      0      0.0      0.000         0.0        0
      
    1. SSE = åi=1,5 ei2 = -.42 + -.22 + 12 + .22 + -.62 = 1.6
                         _
      SSTO = åi=1,5 (yi - y)2 = -22 + -12 + 12 + 12 + 12 = 8
      
           SSTO - SSE    8 - 1.6
      R2  = ---------- = --------- = .8
              SSTO          8
      
    2. s2 = [åi=1,5 ei2]/(n - 2) = 1.6/(5-2) = .53333

         ^                    _
      s2{b1} = s2/[åi=1,5 (xi - X)2] = .53333/10 = .053333
         ^                                 _
      s2{b0} = [s2åi=1,5 xi2]/{n[åi=1,5 (xi - X)2]} 
             = (.53333*30)/(5*10) = .31999
      Hence:  
        ^
      s{b1} = .23094
        ^                              
      s{b0} = .56568
      
    3. The hypothesis test is:

      Ho: b1 = 0
      H1: b1 ¹ 0


      Our test statistic has a t distribution with n - 2 = 3 degrees of freedom:
                        ^          ^
      test statistic = (b1 - b1)/s{b1} = .800/.23094 = 3.4641
      
      Using EVIEWS, P-Value (two-tail) = .04052.

      Ho: b0 = 0
      H1: b0 ¹ 0


      Our test statistic has a t distribution with n - 2 = 3 degrees of freedom:
                        ^          ^
      test statistic = (b0 - b0)/s{b0} = -1.6/.56568 = -2.8284
      
      Using EVIEWS, P-Value (two-tail) = .06628.

      Below is the EVIEWS output. The first three columns of the table contain exactly the same values as those calculated in parts b, f and g respectively. As for the statistics below the table, we found R (R-squared) in part e, s (SE of regression) and the SSE (sum of squared residuals) in part f. The Mean of the dependent variable (Y) can be found in parts b,c or d. The 2 tail significance values below are the same as the ones computed above.
      ============================================================
      LS // Dependent Variable is Y                                         
      Date: 03/02/98   Time: 22:21                                          
      Sample: 1 5                                                           
      Included observations: 5                                              
      ============================================================
            Variable      CoefficienStd. Errort-Statistic  Prob.            
      ============================================================
               C          -1.600000   0.565685  -2.828427   0.0663          
               X           0.800000   0.230940   3.464102   0.0405          
      ============================================================
      R-squared            0.800000    Mean dependent var 0.000000          
      Adjusted R-squared   0.733333    S.D. dependent var 1.414214          
      S.E. of regression   0.730297    Akaike info criter-0.339434          
      Sum squared resid    1.600000    Schwarz criterion -0.495659          
      Log likelihood      -4.246107    F-statistic        12.00000          
      Durbin-Watson stat   1.725000    Prob(F-statistic)  0.040519          
      ============================================================
      

  1. The results of the simple linear regression are given below:

    1. ============================================================
      LS // Dependent Variable is FUEL                                      
      Date: 03/02/98   Time: 22:29                                          
      Sample: 1 8                                                           
      Included observations: 8                                              
      ============================================================
            Variable      CoefficienStd. Errort-Statistic  Prob.            
      ============================================================
               C           15.83786   0.801773   19.75353   0.0000          
              TEMP        -0.127922   0.017457  -7.327679   0.0003          
      ============================================================
      R-squared            0.899489    Mean dependent var 10.21250          
      Adjusted R-squared   0.882737    S.D. dependent var 1.910451          
      S.E. of regression   0.654209    Akaike info criter-0.636340          
      Sum squared resid    2.567934    Schwarz criterion -0.616480          
      Log likelihood      -6.806148    F-statistic        53.69488          
      Durbin-Watson stat   3.017045    Prob(F-statistic)  0.000330          
      ============================================================
      
    2. The plot looks like this:

      The tons of coal consumed decrease by .1279 for every degree that the temperature decreases. At a temperature of 0, an estimate for the average number of tons of coal consumed is 15.8378.

    3. To find a point estimate of the expected value of fuel consumed when the average hourly temperature is 41, we simply plug 41 into our estimated equation:
              ^     ^     ^
              yp  = b0  + b1 xp  = 15.83786 - .127922*41 = 10.593058
      
    4. The 95% confidence interval for the point estimate in (c) is given by:
      ^     ^                                   _     ^
      b0  + b1 xp ± t.025,n-2[s2(1 + 1/n) + (xp - X)2s2{b1}]1/2  
      
      Thus we find

      15.83786 - .127922*41 ± 2.447*[.6542092(1 + 1/8) + (41 - 43.975)2(.017457)2]1/2

      and the confidence limits are: (8.8904, 12.2958)

  2. Below is the EVIEWS output for the Windmill example:
    ============================================================
    Dependent Variable: DCOUT                                             
    Method: Least Squares                                                 
    Date: 03/03/98   Time: 14:56                                          
    Sample: 1 25                                                          
    Included observations: 25                                             
    ============================================================
         Variable      CoefficientStd. Errort-Statistic  Prob.            
    ============================================================
             C           0.130875   0.125989   1.038779   0.3097          
           WIND          0.241149   0.019049   12.65927   0.0000          
    ============================================================
    R-squared            0.874493    Mean dependent var 1.609600          
    Adjusted R-squared   0.869036    S.D. dependent var 0.652278          
    S.E. of regression   0.236052    Akaike info criter 0.027090          
    Sum squared resid    1.281573    Schwarz criterion  0.124600          
    Log likelihood       1.661381    F-statistic        160.2571          
    Durbin-Watson stat   0.536610    Prob(F-statistic)  0.000000          
    ============================================================
    
    And here is a graph of the fitted function and the residuals:

    The pattern of the residuals is clearly not random. This is an unambiguous sign that we have a specification error and some sort of transformation of the current variables or addition of new variables is necessary.

  3. Below is the EVIEWS output for the paper strength example:
    ============================================================
    Dependent Variable: TENSILE                                           
    Method: Least Squares                                                 
    Date: 03/03/98   Time: 15:17                                          
    Sample: 1 19                                                          
    Included observations: 19                                             
    ============================================================
         Variable      CoefficientStd. Errort-Statistic  Prob.            
    ============================================================
             C           21.32126   5.430178   3.926439   0.0011          
         HARDWOOD        1.770986   0.647814   2.733788   0.0141          
    ============================================================
    R-squared            0.305374    Mean dependent var 34.18421          
    Adjusted R-squared   0.264513    S.D. dependent var 13.77777          
    S.E. of regression   11.81589    Akaike info criter 7.876068          
    Sum squared resid    2373.458    Schwarz criterion  7.975482          
    Log likelihood      -72.82264    F-statistic        7.473597          
    Durbin-Watson stat   0.246890    Prob(F-statistic)  0.014140          
    ============================================================
    
    And here is a graph of the fitted function and the residuals:

    Once again the pattern of the residuals is clearly not random. This is an unambiguous sign that we have a specification error and some sort of transformation of the current variables or addition of new variables is necessary.