============================================================ LS // Dependent Variable is CLINT92 Date: 03/27/98 Time: 14:21 Sample: 1 407 Included observations: 407 ============================================================ Variable CoefficienStd. Errort-Statistic Prob. ============================================================ C 40.71648 1.473157 27.63893 0.0000 AFRAM 0.417606 0.022756 18.35184 0.0000 HISP 0.161357 0.021758 7.416127 0.0000 INCOME -0.090043 0.042894 -2.099211 0.0364 SOUTH -3.292143 0.824754 -3.991666 0.0001 LCECON103 -14.92176 1.049951 -14.21187 0.0000 LCSOC103 -4.266176 0.831283 -5.132037 0.0000 ============================================================ R-squared 0.750458 Mean dependent var 43.92138 Adjusted R-squared 0.746715 S.D. dependent var 12.17377 S.E. of regression 6.126750 Akaike info criter 3.642378 Sum squared resid 15014.83 Schwarz criterion 3.711326 Log likelihood -1311.732 F-statistic 200.4892 Durbin-Watson stat 1.335062 Prob(F-statistic) 0.000000 ============================================================ ============================================================ LS // Dependent Variable is BUSH92 Date: 03/27/98 Time: 14:22 Sample: 1 407 Included observations: 407 ============================================================ Variable CoefficienStd. Errort-Statistic Prob. ============================================================ C 34.01372 1.286647 26.43594 0.0000 AFRAM -0.192880 0.019875 -9.704868 0.0000 HISP -0.092295 0.019003 -4.856866 0.0000 INCOME 0.149004 0.037463 3.977354 0.0001 SOUTH 7.393401 0.720336 10.26383 0.0000 LCECON103 12.53965 0.917021 13.67433 0.0000 LCSOC103 3.054497 0.726038 4.207077 0.0000 ============================================================ R-squared 0.671402 Mean dependent var 36.98034 Adjusted R-squared 0.666473 S.D. dependent var 9.265626 S.E. of regression 5.351069 Akaike info criter 3.371642 Sum squared resid 11453.58 Schwarz criterion 3.440590 Log likelihood -1256.637 F-statistic 136.2152 Durbin-Watson stat 1.488689 Prob(F-statistic) 0.000000 ============================================================ ============================================================ LS // Dependent Variable is PEROT92 Date: 03/27/98 Time: 14:23 Sample: 1 407 Included observations: 407 ============================================================ Variable CoefficienStd. Errort-Statistic Prob. ============================================================ C 24.44912 0.991061 24.66964 0.0000 AFRAM -0.225134 0.015309 -14.70626 0.0000 HISP -0.069345 0.014637 -4.737525 0.0000 INCOME -0.054807 0.028857 -1.899291 0.0582 SOUTH -3.747834 0.554850 -6.754673 0.0000 LCECON103 2.357762 0.706351 3.337948 0.0009 LCSOC103 1.109201 0.559243 1.983397 0.0480 ============================================================ R-squared 0.536450 Mean dependent var 18.50369 Adjusted R-squared 0.529496 S.D. dependent var 6.008972 S.E. of regression 4.121750 Akaike info criter 2.849605 Sum squared resid 6795.529 Schwarz criterion 2.918553 Log likelihood -1150.403 F-statistic 77.15089 Durbin-Watson stat 0.946190 Prob(F-statistic) 0.000000 ============================================================The coefficients in the Clinton and Bush regressions all have the correct signs and are statistically significant -- the largest p-value is only .0364 on the INCOME variable in the Clinton equation. Clinton did very well in districts with sizable African-American populations and in districts represented by liberal congressmen.
============================================================ LS // Dependent Variable is CLINT96 Date: 03/27/98 Time: 14:57 Sample: 1 407 Included observations: 407 ============================================================ Variable CoefficienStd. Errort-Statistic Prob. ============================================================ C 46.67272 1.421413 32.83545 0.0000 AFRAM 0.380007 0.022350 17.00282 0.0000 HISP 0.217946 0.021059 10.34908 0.0000 INCOME -0.032785 0.041479 -0.790384 0.4298 SOUTH -4.212347 0.775116 -5.434470 0.0000 LCECON104 -16.02892 0.965621 -16.59960 0.0000 LCSOC104 -5.472769 0.790804 -6.920517 0.0000 ============================================================ R-squared 0.791252 Mean dependent var 50.41769 Adjusted R-squared 0.788121 S.D. dependent var 12.74948 S.E. of regression 5.868626 Akaike info criter 3.556290 Sum squared resid 13776.31 Schwarz criterion 3.625238 Log likelihood -1294.213 F-statistic 252.6980 Durbin-Watson stat 1.378019 Prob(F-statistic) 0.000000 ============================================================ ============================================================ LS // Dependent Variable is DOLE96 Date: 03/27/98 Time: 14:59 Sample: 1 407 Included observations: 407 ============================================================ Variable CoefficienStd. Errort-Statistic Prob. ============================================================ C 38.47091 1.504226 25.57522 0.0000 AFRAM -0.250124 0.023652 -10.57529 0.0000 HISP -0.143436 0.022286 -6.436031 0.0000 INCOME 0.107895 0.043896 2.457973 0.0144 SOUTH 6.465954 0.820276 7.882661 0.0000 LCECON104 16.25024 1.021879 15.90231 0.0000 LCSOC104 5.418992 0.836877 6.475258 0.0000 ============================================================ R-squared 0.725911 Mean dependent var 39.73464 Adjusted R-squared 0.721799 S.D. dependent var 11.77471 S.E. of regression 6.210538 Akaike info criter 3.669545 Sum squared resid 15428.31 Schwarz criterion 3.738492 Log likelihood -1317.260 F-statistic 176.5629 Durbin-Watson stat 1.426119 Prob(F-statistic) 0.000000 ============================================================ ============================================================ LS // Dependent Variable is PEROT96 Date: 03/27/98 Time: 14:59 Sample: 1 407 Included observations: 407 ============================================================ Variable CoefficienStd. Errort-Statistic Prob. ============================================================ C 13.70630 0.441327 31.05702 0.0000 AFRAM -0.116052 0.006939 -16.72412 0.0000 HISP -0.082123 0.006539 -12.55963 0.0000 INCOME -0.097065 0.012879 -7.536853 0.0000 SOUTH -1.479197 0.240662 -6.146370 0.0000 LCECON104 0.189186 0.299811 0.631018 0.5284 LCSOC104 0.472191 0.245532 1.923131 0.0552 ============================================================ R-squared 0.604723 Mean dependent var 8.289926 Adjusted R-squared 0.598794 S.D. dependent var 2.876689 S.E. of regression 1.822119 Akaike info criter 1.217049 Sum squared resid 1328.047 Schwarz criterion 1.285997 Log likelihood -818.1775 F-statistic 101.9915 Durbin-Watson stat 1.146324 Prob(F-statistic) 0.000000 ============================================================The regression results for Clinton in 1996 are essentially the same as those for 1992. The only big difference is the intercept. Clinton's vote, all else held equal, was higher across the board in 1996. Interestingly, the income effect is no longer statistically significant. This could reflect Clinton's success in protraying himself as a fiscal conservative. However, on the other hand, note that the coefficients on the ideological variables have increased slightly in magnitude.
============================================================ LS // Dependent Variable is CLINT96 Date: 03/27/98 Time: 16:08 Sample: 1 407 Included observations: 407 ============================================================ Variable CoefficienStd. Errort-Statistic Prob. ============================================================ C 47.09082 1.381522 34.08618 0.0000 AFRAM 0.368268 0.021727 16.94977 0.0000 HISP 0.211036 0.020340 10.37540 0.0000 INCOME -0.047721 0.040007 -1.192812 0.2337 SOUTH -3.799335 0.748587 -5.075344 0.0000 LCECON104 -17.40202 0.961411 -18.10050 0.0000 LCSOC104 -5.134018 0.770416 -6.663957 0.0000 REP104*(1-REP105) 7.064975 1.326490 5.326069 0.0000 (1-REP104)*REP105 -4.381055 1.734261 -2.526180 0.0119 ============================================================ R-squared 0.807977 Mean dependent var 50.41769 Adjusted R-squared 0.804118 S.D. dependent var 12.74948 S.E. of regression 5.642741 Akaike info criter 3.482605 Sum squared resid 12672.53 Schwarz criterion 3.571252 Log likelihood -1277.218 F-statistic 209.3341 Durbin-Watson stat 1.350070 Prob(F-statistic) 0.000000 ============================================================ ==================================================== Wald Test: Equation: Untitled ==================================================== Null HypothesisC(8)=-C(9) ==================================================== F-statistic 1.515547 Probability 0.219022 Chi-square 1.515547 Probability 0.218295 ==================================================== ============================================================ LS // Dependent Variable is DOLE96 Date: 03/27/98 Time: 16:11 Sample: 1 407 Included observations: 407 ============================================================ Variable CoefficienStd. Errort-Statistic Prob. ============================================================ C 38.00511 1.464857 25.94458 0.0000 AFRAM -0.237542 0.023038 -10.31105 0.0000 HISP -0.136022 0.021567 -6.306931 0.0000 INCOME 0.123671 0.042421 2.915344 0.0038 SOUTH 6.039659 0.793742 7.609093 0.0000 LCECON104 17.68563 1.019404 17.34898 0.0000 LCSOC104 5.049261 0.816888 6.181092 0.0000 REP104*(1-REP105) -7.203941 1.406505 -5.121874 0.0000 (1-REP104)*REP105 4.807518 1.838874 2.614382 0.0093 ============================================================ R-squared 0.746888 Mean dependent var 39.73464 Adjusted R-squared 0.741801 S.D. dependent var 11.77471 S.E. of regression 5.983118 Akaike info criter 3.599749 Sum squared resid 14247.49 Schwarz criterion 3.688396 Log likelihood -1301.057 F-statistic 146.8036 Durbin-Watson stat 1.411552 Prob(F-statistic) 0.000000 ============================================================ ==================================================== Wald Test: Equation: Untitled ==================================================== Null HypothesisC(8)=-C(9) ==================================================== F-statistic 1.074688 Probability 0.300518 Chi-square 1.074688 Probability 0.299889 ==================================================== ============================================================ LS // Dependent Variable is PEROT96 Date: 03/27/98 Time: 16:13 Sample: 1 407 Included observations: 407 ============================================================ Variable CoefficienStd. Errort-Statistic Prob. ============================================================ C 13.76346 0.446793 30.80498 0.0000 AFRAM -0.116878 0.007027 -16.63351 0.0000 HISP -0.082622 0.006578 -12.56016 0.0000 INCOME -0.097749 0.012939 -7.554774 0.0000 SOUTH -1.475876 0.242098 -6.096195 0.0000 LCECON104 0.149666 0.310927 0.481356 0.6305 LCSOC104 0.506470 0.249158 2.032728 0.0427 REP104*(1-REP105) -0.081821 0.428996 -0.190726 0.8488 (1-REP104)*REP105 -0.483862 0.560871 -0.862696 0.3888 ============================================================ R-squared 0.605498 Mean dependent var 8.289926 Adjusted R-squared 0.597568 S.D. dependent var 2.876689 S.E. of regression 1.824900 Akaike info criter 1.224915 Sum squared resid 1325.443 Schwarz criterion 1.313562 Log likelihood -817.7782 F-statistic 76.35835 Durbin-Watson stat 1.143984 Prob(F-statistic) 0.000000 ============================================================ ==================================================== Wald Test: Equation: Untitled ==================================================== Null HypothesisC(8)=-C(9) ==================================================== F-statistic 0.643692 Probability 0.422856 Chi-square 0.643692 Probability 0.422377 ====================================================The magnitude of the coefficients on the party-switch indicator variables in the Clinton and Dole regressions is about the same. In those districts that switched from Republican to Democrat in the 1996 elections, Clinton picked up 7 percentage points and Dole lost 7 percentage points; and in those districts that switched from Democrat to Republican in 1996, Clinton lost a bit over 4 percentage points and Dole picked up a bit under 5 percentage points. This makes sense and is consistent with a story of voter punishment of the House Republicans for shutting down the government. However, the Wald tests for Clinton and Dole show that we cannot reject the null hypothesis that the effect is the same. Even so, the effect appears to be present but it is not very large in magnitude. Finally, note that in the Perot regresssion these coefficients are both negative and statistically insignificant! This does not support a story about Perot appealling to the disaffected!
============================================================ LS // Dependent Variable is LOG(PRICE) Date: 03/28/98 Time: 14:26 Sample: 1 574 Included observations: 574 ============================================================ Variable CoefficienStd. Errort-Statistic Prob. ============================================================ C 5.192543 0.257102 20.19645 0.0000 LOG(SQFT) 0.997349 0.041457 24.05732 0.0000 BED 0.049292 0.021497 2.292995 0.0222 BATH 0.007593 0.025845 0.293801 0.7690 STORY -0.009927 0.002515 -3.946731 0.0001 CDIST 4.59E-06 3.53E-06 1.298839 0.1945 PARK 0.141336 0.025300 5.586488 0.0000 MDUM -0.249986 0.079382 -3.149150 0.0017 BDUM -0.242321 0.077275 -3.135843 0.0018 CDUM -0.304950 0.078438 -3.887802 0.0001 ============================================================ R-squared 0.836759 Mean dependent var 11.69985 Adjusted R-squared 0.834154 S.D. dependent var 0.574891 S.E. of regression 0.234120 Akaike info criter-2.886577 Sum squared resid 30.91400 Schwarz criterion -2.810747 Log likelihood 23.97687 F-statistic 321.2241 Durbin-Watson stat 1.976597 Prob(F-statistic) 0.000000 ============================================================ ============================================================ LS // Dependent Variable is LOG(PRICE/SQFT) Date: 03/28/98 Time: 14:28 Sample: 1 574 Included observations: 574 ============================================================ Variable CoefficienStd. Errort-Statistic Prob. ============================================================ C 5.176905 0.079368 65.22628 0.0000 BED 0.048406 0.016428 2.946602 0.0033 BATH 0.006803 0.022677 0.299990 0.7643 STORY -0.009910 0.002498 -3.967230 0.0001 CDIST 4.57E-06 3.52E-06 1.299165 0.1944 PARK 0.141187 0.025171 5.609190 0.0000 MDUM -0.249641 0.079128 -3.154881 0.0017 BDUM -0.242077 0.077113 -3.139273 0.0018 CDUM -0.304846 0.078352 -3.890743 0.0001 ============================================================ R-squared 0.157690 Mean dependent var 4.978085 Adjusted R-squared 0.145764 S.D. dependent var 0.253085 S.E. of regression 0.233913 Akaike info criter-2.890054 Sum squared resid 30.91423 Schwarz criterion -2.821807 Log likelihood 23.97479 F-statistic 13.22181 Durbin-Watson stat 1.976815 Prob(F-statistic) 0.000000 ============================================================The R2 for the first model is the proportion of the variance in price per dwelling explained by the model. The R2 for the second model is the proportion of the variance in price per square foot explained by the model. The models are essentially the same. The size of the dwelling seems to explain much of the price of a dwelling. Indeed, the correlation between LOG(PRICE) and LOG(SQFT) is .902! Neither model is better than the other. We can say that it is harder to explain price per square foot than price per dwelling (note that the s.d. of the dependent variable in the second model is less than one-half the size of the s.d. of the first model). This example shows why being overly concerned with R2 can be misleading. By simply rewriting the second model in the form of the first model, the R2 looks better.
================================= obs FLOORS PROFIT ================================= 1 1.000000 144.6863 2 2.000000 281.6908 3 3.000000 411.0679 4 4.000000 532.8714 5 5.000000 647.1542 6 6.000000 753.9688 7 7.000000 853.3668 8 8.000000 945.3991 9 9.000000 1030.116 10 10.00000 1107.567 11 11.00000 1177.802 12 12.00000 1240.868 13 13.00000 1296.813 14 14.00000 1345.685 15 15.00000 1387.529 16 16.00000 1422.392 17 17.00000 1450.318 18 18.00000 1471.353 19 19.00000 1485.541 20 20.00000 1492.924 21 21.00000 1493.546 22 22.00000 1487.448 23 23.00000 1474.673 24 24.00000 1455.262 25 25.00000 1429.256 26 26.00000 1396.693 27 27.00000 1357.615 28 28.00000 1312.059 29 29.00000 1260.065 30 30.00000 1201.670