The Correlogram for Y1 is shown below. It is somewhat ambiguous but it
does indicate at least two and possibly three MA terms. I would try three
MA terms first.
Correlogram of Y1
==============================================================
Date: 03/24/98 Time: 21:28
Sample: 1 100
Included observations: 96
==============================================================
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
==============================================================
******| . | ******| . | 1-0.708-0.708 49.601 0.000
. |**** | . | . | 2 0.474-0.054 72.078 0.000
**| . | . | . | 3-0.316-0.001 82.177 0.000
. |*. | **| . | 4 0.108-0.207 83.360 0.000
. |*. | . |*. | 5 0.104 0.190 84.479 0.000
==============================================================
LS Y1 C MA(1) MA(2) MA(3)
============================================================
LS // Dependent Variable is Y1
Date: 03/24/98 Time: 21:31
Sample(adjusted): 5 100
Included observations: 96 after adjusting endpoints
Convergence achieved after 23 iterations
============================================================
Variable CoefficienStd. Errort-Statistic Prob.
============================================================
C -0.024567 0.046734 -0.525667 0.6004
MA(1) -0.445189 0.083942 -5.303556 0.0000
MA(2) 0.405915 0.086802 4.676344 0.0000
MA(3) -0.580366 0.088593 -6.550918 0.0000
============================================================
R-squared 0.497198 Mean dependent var-0.029085
Adjusted R-squared 0.480802 S.D. dependent var 1.601392
S.E. of regression 1.153889 Akaike info criter 0.327050
Sum squared resid 122.4943 Schwarz criterion 0.433897
Log likelihood -147.9165 F-statistic 30.32489
Durbin-Watson stat 2.338553 Prob(F-statistic) 0.000000
============================================================
Inverted MA Roots .8 -.19 -.82 -.19+.82i
============================================================
This looks very good. The Correlogram of the residuals is shown below.
Correlogram of Residuals
==============================================================
Date: 03/24/98 Time: 21:34
Sample: 5 100
Included observations: 96
Q-statistic probabilities adjusted for 3 ARMA term(s)
==============================================================
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
==============================================================
.*| . | .*| . | 1-0.174-0.174 3.0023
. | . | . | . | 2 0.035 0.005 3.1259
. | . | . | . | 3 0.049 0.058 3.3724
. |** | . |** | 4 0.214 0.240 8.0398 0.005
. |** | . |** | 5 0.204 0.310 12.350 0.002
==============================================================
The p-values at lag 4 and 5 indicate that we reject the
null hypothesis of white noise. Consequently,
another MA term might improve the model.
LS Y1 C MA(1) MA(2) MA(3) MA(4)
============================================================
LS // Dependent Variable is Y1
Date: 03/24/98 Time: 21:39
Sample(adjusted): 5 100
Included observations: 96 after adjusting endpoints
Convergence achieved after 16 iterations
============================================================
Variable CoefficienStd. Errort-Statistic Prob.
============================================================
C -0.023937 0.079127 -0.302518 0.7629
MA(1) -0.793839 0.075327 -10.53859 0.0000
MA(2) 0.704617 0.078089 9.023306 0.0000
MA(3) -0.774051 0.048615 -15.92190 0.0000
MA(4) 0.628794 0.076743 8.193488 0.0000
============================================================
R-squared 0.602554 Mean dependent var-0.029085
Adjusted R-squared 0.585083 S.D. dependent var 1.601392
S.E. of regression 1.031521 Akaike info criter 0.112747
Sum squared resid 96.82724 Schwarz criterion 0.246307
Log likelihood -136.6299 F-statistic 34.49042
Durbin-Watson stat 1.895787 Prob(F-statistic) 0.000000
============================================================
Inverted MA Roots .71 -. .71+.47i -.31 -.88 -.31+.88i
============================================================
The correlogram of the residuals confirms that this seems to be the right
model. The Q-Stat with 1 (5-0-4) degree of freedom at lag 5 has a
p-value of .286.
Correlogram of Residuals
==============================================================
Date: 03/24/98 Time: 21:43
Sample: 5 100
Included observations: 96
Q-statistic probabilities adjusted for 4 ARMA term(s)
==============================================================
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
==============================================================
. | . | . | . | 1 0.052 0.052 0.2628
. | . | . | . | 2-0.045-0.048 0.4673
. |*. | . |*. | 3 0.081 0.086 1.1311
. | . | . | . | 4-0.001-0.012 1.1311
. | . | . | . | 5-0.008 0.001 1.1383 0.286
==============================================================
Below is the correlogram for Y2. Given the three
sizable spikes in the PACFs, I am inclined to try three AR terms.
Correlogram of Y2
==============================================================
Date: 03/24/98 Time: 21:54
Sample: 1 100
Included observations: 100
==============================================================
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
==============================================================
. |**** | . |**** | 1 0.482 0.482 23.922 0.000
***| . | ******| . | 2-0.348-0.756 36.523 0.000
******| . | ***| . | 3-0.779-0.367 100.41 0.000
****| . | . | . | 4-0.465 0.000 123.40 0.000
. |** | . | . | 5 0.212 0.007 128.24 0.000
==============================================================
LS Y2 C AR(1) AR(2) AR(3)
============================================================
LS // Dependent Variable is Y2
Date: 03/24/98 Time: 21:56
Sample(adjusted): 4 100
Included observations: 97 after adjusting endpoints
Convergence achieved after 3 iterations
============================================================
Variable CoefficienStd. Errort-Statistic Prob.
============================================================
C 0.021432 0.091892 0.233232 0.8161
AR(1) 0.578643 0.095971 6.029343 0.0000
AR(2) -0.461242 0.103059 -4.475528 0.0000
AR(3) -0.362344 0.096140 -3.768934 0.0003
============================================================
R-squared 0.727193 Mean dependent var 0.044761
Adjusted R-squared 0.718392 S.D. dependent var 2.122938
S.E. of regression 1.126573 Akaike info criter 0.278724
Sum squared resid 118.0326 Schwarz criterion 0.384897
Log likelihood -147.1551 F-statistic 82.63329
Durbin-Watson stat 2.019926 Prob(F-statistic) 0.000000
============================================================
Inverted AR Roots .50+.7 .50 -.79 -.41
============================================================
All three AR terms are statistically significant and the correlogram of the
residuals shows no further correlated structure in the residuals. The
Q-statistic at lag 5 has 2 (5-3-0) degrees of freedom and
a p-value of .548. Hence we do not reject the null hypothesis that
the residuals are white noise.
Correlogram of Residuals
==============================================================
Date: 03/24/98 Time: 21:57
Sample: 4 100
Included observations: 97
Q-statistic probabilities adjusted for 3 ARMA term(s)
==============================================================
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
==============================================================
. | . | . | . | 1-0.010-0.010 0.0104
. | . | . | . | 2-0.028-0.028 0.0877
. | . | . | . | 3 0.064 0.064 0.5102
. |*. | . |*. | 4 0.071 0.072 1.0289 0.310
. | . | . | . | 5-0.041-0.036 1.2044 0.548
==============================================================
Given the very large spike at the first PACF,
I am inclined to start with a simple AR(1) model.
Correlogram of Y3
==============================================================
Date: 03/24/98 Time: 22:00
Sample: 1 100
Included observations: 100
==============================================================
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
==============================================================
. |*******| . |*******| 1 0.880 0.880 79.727 0.000
. |***** | ***| . | 2 0.694-0.352 129.89 0.000
. |**** | . | . | 3 0.528 0.059 159.19 0.000
. |*** | .*| . | 4 0.380-0.091 174.51 0.000
. |** | . | . | 5 0.263 0.034 181.91 0.000
==============================================================
LS Y3 C AR(1)
============================================================
LS // Dependent Variable is Y3
Date: 03/24/98 Time: 22:02
Sample(adjusted): 2 100
Included observations: 99 after adjusting endpoints
Convergence achieved after 3 iterations
============================================================
Variable CoefficienStd. Errort-Statistic Prob.
============================================================
C 1.961704 1.768729 1.109104 0.2701
AR(1) 0.923736 0.044381 20.81372 0.0000
============================================================
R-squared 0.817054 Mean dependent var 0.940025
Adjusted R-squared 0.815168 S.D. dependent var 2.907858
S.E. of regression 1.250149 Akaike info criter 0.466521
Sum squared resid 151.5987 Schwarz criterion 0.518948
Log likelihood -161.5677 F-statistic 433.2110
Durbin-Watson stat 1.126531 Prob(F-statistic) 0.000000
============================================================
Inverted AR Roots .92
============================================================
The AR(1) term is statistically significant but the correlogram of the
residuals show that we still have a spike in the first ACF and PACF
indicating that we need an MA(1) term.
Correlogram of Residuals
==============================================================
Date: 03/24/98 Time: 22:03
Sample: 2 100
Included observations: 99
Q-statistic probabilities adjusted for 1 ARMA term(s)
==============================================================
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
==============================================================
. |*** | . |*** | 1 0.424 0.424 18.362
. | . | **| . | 2-0.022-0.247 18.414 0.000
. | . | . |*. | 3-0.010 0.139 18.424 0.000
. | . | .*| . | 4-0.035-0.127 18.556 0.000
.*| . | . | . | 5-0.086-0.014 19.350 0.001
==============================================================
LS Y3 C AR(1) MA(1)
============================================================
LS // Dependent Variable is Y3
Date: 03/24/98 Time: 22:04
Sample(adjusted): 2 100
Included observations: 99 after adjusting endpoints
Convergence achieved after 6 iterations
============================================================
Variable CoefficienStd. Errort-Statistic Prob.
============================================================
C 1.435282 1.143186 1.255510 0.2123
AR(1) 0.844586 0.061323 13.77276 0.0000
MA(1) 0.622440 0.083629 7.442859 0.0000
============================================================
R-squared 0.867037 Mean dependent var 0.940025
Adjusted R-squared 0.864266 S.D. dependent var 2.907858
S.E. of regression 1.071314 Akaike info criter 0.167606
Sum squared resid 110.1805 Schwarz criterion 0.246246
Log likelihood -145.7714 F-statistic 313.0015
Durbin-Watson stat 1.928668 Prob(F-statistic) 0.000000
============================================================
Inverted AR Roots .84
Inverted MA Roots -.62
============================================================
The correlogram of the residuals shows that we have white noise. The
Q-statistic at 5 lags has 3 (5-1-1) degrees of freedom with a
p-value of .899. Hence we do not reject the null hypothesis that
the residuals are white noise.
Correlogram of Residuals
==============================================================
Date: 03/24/98 Time: 22:05
Sample: 2 100
Included observations: 99
Q-statistic probabilities adjusted for 2 ARMA term(s)
==============================================================
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
==============================================================
. | . | . | . | 1 0.025 0.025 0.0643
. | . | . | . | 2 0.046 0.045 0.2830
. | . | . | . | 3 0.032 0.030 0.3901 0.532
. | . | . | . | 4 0.022 0.019 0.4418 0.802
. | . | . | . | 5-0.037-0.041 0.5870 0.899
==============================================================
The correlogram of Y4 is ambiguous but it looks like there is at least
one AR term in the error structure. Several different starting places could
be chosen here. I will start with AR(1) and AR(2).
Correlogram of Y4
==============================================================
Date: 03/24/98 Time: 22:07
Sample: 1 100
Included observations: 100
==============================================================
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
==============================================================
. |*******| . |*******| 1 0.847 0.847 73.868 0.000
. |***** | ***| . | 2 0.597-0.423 111.00 0.000
. |*** | .*| . | 3 0.347-0.062 123.68 0.000
. |** | . |** | 4 0.197 0.208 127.80 0.000
. |*. | **| . | 5 0.066-0.296 128.27 0.000
==============================================================
LS Y4 C AR(1) AR(2)
============================================================
LS // Dependent Variable is Y4
Date: 03/24/98 Time: 22:08
Sample(adjusted): 3 100
Included observations: 98 after adjusting endpoints
Convergence achieved after 3 iterations
============================================================
Variable CoefficienStd. Errort-Statistic Prob.
============================================================
C -0.591764 0.523659 -1.130057 0.2613
AR(1) 1.218762 0.092320 13.20143 0.0000
AR(2) -0.432515 0.092587 -4.671425 0.0000
============================================================
R-squared 0.774750 Mean dependent var-0.595948
Adjusted R-squared 0.770008 S.D. dependent var 2.309977
S.E. of regression 1.107807 Akaike info criter 0.234899
Sum squared resid 116.5875 Schwarz criterion 0.314031
Log likelihood -147.5660 F-statistic 163.3768
Durbin-Watson stat 2.044549 Prob(F-statistic) 0.000000
============================================================
Inverted AR Roots .61 -. .61+.25i
============================================================
The correlogram of the residuals shows that we need some further terms. The
spike at lag 3 could be either an MA(3) or a AR(3) term. Lets try the AR(3)
term first.
Correlogram of Residuals
==============================================================
Date: 03/24/98 Time: 22:09
Sample: 3 100
Included observations: 98
Q-statistic probabilities adjusted for 2 ARMA term(s)
==============================================================
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
==============================================================
. | . | . | . | 1-0.048-0.048 0.2349
. |*. | . |*. | 2 0.121 0.119 1.7362
**| . | **| . | 3-0.252-0.245 8.3038 0.004
. |*. | . |*. | 4 0.115 0.093 9.6766 0.008
. |*. | . |** | 5 0.194 0.275 13.644 0.003
==============================================================
LS Y4 C AR(1) AR(2) AR(3)
============================================================
LS // Dependent Variable is Y4
Date: 03/24/98 Time: 22:11
Sample(adjusted): 4 100
Included observations: 97 after adjusting endpoints
Convergence achieved after 3 iterations
============================================================
Variable CoefficienStd. Errort-Statistic Prob.
============================================================
C -0.707052 0.478346 -1.478118 0.1428
AR(1) 1.170528 0.100622 11.63292 0.0000
AR(2) -0.322918 0.152465 -2.117982 0.0368
AR(3) -0.078392 0.100694 -0.778520 0.4382
============================================================
R-squared 0.783610 Mean dependent var-0.628997
Adjusted R-squared 0.776629 S.D. dependent var 2.298569
S.E. of regression 1.086352 Akaike info criter 0.206014
Sum squared resid 109.7550 Schwarz criterion 0.312188
Log likelihood -143.6287 F-statistic 112.2596
Durbin-Watson stat 2.023847 Prob(F-statistic) 0.000000
============================================================
Inverted AR Roots .66+.2 .66 -.29 -.15
============================================================
The AR(3) term is not the right guess. Consequently, I now
try the MA(3) term:
LS Y4 C AR(1) AR(2) MA(3)
============================================================
LS // Dependent Variable is Y4
Date: 03/24/98 Time: 22:13
Sample(adjusted): 3 100
Included observations: 98 after adjusting endpoints
Convergence achieved after 9 iterations
============================================================
Variable CoefficienStd. Errort-Statistic Prob.
============================================================
C -0.808939 0.368806 -2.193402 0.0307
AR(1) 1.364322 0.091908 14.84443 0.0000
AR(2) -0.451403 0.093193 -4.843747 0.0000
MA(3) -0.701170 0.093237 -7.520296 0.0000
============================================================
R-squared 0.828102 Mean dependent var-0.595948
Adjusted R-squared 0.822616 S.D. dependent var 2.309977
S.E. of regression 0.972893 Akaike info criter-0.015003
Sum squared resid 88.97293 Schwarz criterion 0.090506
Log likelihood -134.3208 F-statistic 150.9453
Durbin-Watson stat 2.087724 Prob(F-statistic) 0.000000
============================================================
Inverted AR Roots .8 .56
Inverted MA Roots .8 -.44 -.77 -.44+.77i
============================================================
This looks very good and the correlogram of the residuals shows that we now
have white noise. The Q-statistic at 5 lags has 2 (5-2-1) degrees of
freedom and the p-value is .175. Hence we do not reject the null hypothesis that
the residuals are white noise.
Correlogram of Residuals
==============================================================
Date: 03/24/98 Time: 22:14
Sample: 3 100
Included observations: 98
Q-statistic probabilities adjusted for 3 ARMA term(s)
==============================================================
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
==============================================================
.*| . | .*| . | 1-0.069-0.069 0.4854
. | . | . | . | 2 0.057 0.053 0.8177
. |*. | . |*. | 3 0.088 0.096 1.6192
. | . | . |*. | 4 0.055 0.066 1.9397 0.164
. |*. | . |*. | 5 0.121 0.122 3.4817 0.175
==============================================================