This site is an archived version of Voteview.com archived from University of Georgia on

Due 2 March 2015

- The aim of this problem is to show you how to use
**Orthogonal Procrustes Rotation**. Let**A**be the matrix of Morse Code two dimensional coordinates from the Lower Half of the Similarities matrix that you analyzed in Question 1 of Homework 3 (recall you plotted these!), and let**after subtracting off the column means****B**be the matrix of legislator coordinates from the Upper Half of the Similarities Matrix**after subtracting off the column means****. Note that subtracting off the column means of both matrices centers both at the origin, (0.0, 0.0). Solve for the orthogonal procrustes rotation matrix,****T**, for**B**. Namely, we want to minimize:

**L(T) = tr(A - BT)(A - BT)'**

The solution is:

**T = VU'**where

**A'B = ULV'**

where**ULV'**is the Singular Value Decomposition of**A'B**(see Borg and Groenen, pp. 430-432).

In**R**you can perform the decompostion with the svd command. For example:

**C <- t(A)%*%B**

svddecomp <- svd(C)

**svddecomp$u**has the matrix**U**

**svddecomp$v**has the matrix**V**

**svddecomp$d**has the diagonal of**L**

Note that you can check your work as we discussed in class by doing the following:

**D <- diag(svddecomp$d)**

U <- svddecomp$u

V <- svddecomp$v

ABCHECK <- U%*%D%*%t(V)

errorcheck <- sum((C-ABCHECK)^2)

- Solve for
**T**and turn in a*neatly formatted*listing. Compute the Pearson r-squares between the corresponding columns of**A**and**B***before*and*after*rotating**B**.

- Do a two panel graph with the two plots side-by-side --
**A on the left and the rotated version of****B**on the right. Below is a code fragment showing how to do this:**# par(mfrow=c(1,2)) # # mar # A numerical vector of the form c(bottom, left, top, right) which # gives the number of lines of margin to be specified on the four # sides of the plot. The default is c(5, 4, 4, 2) + 0.1. # Note that you might want to make the right-hand side margin narrower so that the plots are closer together # You may want to experiment with the parameters until the plot looks nice! # This puts more white space # on the Right-Hand-Side Margin # par(mar=c(4.1,5.1,4.1,5.1)) # # plot(dimension1,dimension2,type="n",asp=1, main="", xlab="", ylab="", xlim=c(-2.0,2.0),ylim=c(-2.0,2.0)) points(dimension1,dimension2,pch=16,col="red") axis(1,font=2) axis(2,font=2,cex=1.2) # Main title mtext("Morse Code Signals Lower Half Matrix",side=3,line=1.00,cex=1.2,font=2) # x-axis title mtext("Best Interpretation!!",side=1,line=2.75,cex=1.2) # y-axis title mtext("Best Interpretation!!",side=2,line=2.5,cex=1.2) # # pos -- a position specifier for the text. Values of 1, 2, 3 and 4, # respectively indicate positions below, to the left of, above and # to the right of the specified coordinates # namepos <- rep(4,nrow) # # text(dimension1,dimension2,names,pos=namepos,offset=00.00,col="blue") # # Right hand Plot # plot(dimension11,dimension22,type="n",asp=1, main="", xlab="", ylab="", xlim=c(-2.0,2.0),ylim=c(-2.0,2.0)) points(dimension11,dimension22,pch=16,col="red") axis(1,font=2) axis(2,font=2,cex=1.2) # Main title mtext("Morse Code Signals Upper Half Matrix",side=3,line=1.00,cex=1.2,font=2) # x-axis title mtext("Best Interpretation!!",side=1,line=2.75,cex=1.2) # y-axis title mtext("Best Interpretation!!",side=2,line=2.5,cex=1.2) # # pos -- a position specifier for the text. Values of 1, 2, 3 and 4, # respectively indicate positions below, to the left of, above and # to the right of the specified coordinates # namepos <- rep(4,nrow) # # text(dimension11,dimension22,names,pos=namepos,offset=00.00,col="blue")**

**Use the****Orthogonal Procrustes Rotation**function from MCMCpack to do the rotation. You can see how to do it by inspecting this R program: smacof_nonmetric_nations_Procrustes_rotation.r Turn in the resulting two panel plot and a listing of your**R**program.

- Solve for
**Work Problem (1) on page 143 of***Analyzing Spatial Models of Choice and Judgment With R.*

**Work Problem (2) on pages 143-144 of***Analyzing Spatial Models of Choice and Judgment With R.*