(Joint House and Senate Scaling)
1. Congress Number
2. ICPSR ID Number: 5 digit code assigned by the ICPSR as
corrected by Howard Rosenthal and myself.
3. State Code: 2 digit ICPSR State Code.
4. Congressional District Number (0 if Senate or President)
5. State Name
6. Party Code: 100 = Dem., 200 = Repub. (See PARTY3.DAT)
7. Occupancy: ICPSR Occupancy Code -- 0=only occupant; 1=1st occupant; 2=2nd occupant; etc.
8. Last Means of Attaining Office: ICPSR Attain-Office Code -- 1=general election;
2=special election; 3=elected by state legislature; 5=appointed
9. Name
10. 1st Dimension Coordinate
11. 2nd Dimension Coordinate
12. Log-Likelihood
13. Number of Votes
14. Number of Classification Errors
15. Geometric Mean Probability
The format of the roll call files is:
1. Congress Number
2. Roll Call Number
3. Log-Likelihood
4. Spread on 1st Dimension -- if the roll call was not scaled, there
5. Midpoint on 1st Dimension -- are 0.000's in all four fields
6. Spread on 2nd Dimension --
7. Midpoint on 2nd Dimension --
. regress dwnom1new dwnom1
Source | SS df MS Number of obs = 46,506
-------------+---------------------------------- F(1, 46504) > 99999.00
Model | 6337.23422 1 6337.23422 Prob > F = 0.0000
Residual | 15.4389598 46,504 .000331992 R-squared = 0.9976
-------------+---------------------------------- Adj R-squared = 0.9976
Total | 6352.67318 46,505 .136601939 Root MSE = .01822
------------------------------------------------------------------------------
dwnom1new | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
dwnom1 | .9756203 .0002233 4369.04 0.000 .9751827 .976058
_cons | -.0017729 .0000845 -20.98 0.000 -.0019385 -.0016072
------------------------------------------------------------------------------
. regress dwnom2new dwnom2
Source | SS df MS Number of obs = 46,506
-------------+---------------------------------- F(1, 46504) > 99999.00
Model | 10091.1505 1 10091.1505 Prob > F = 0.0000
Residual | 250.073645 46,504 .005377465 R-squared = 0.9758
-------------+---------------------------------- Adj R-squared = 0.9758
Total | 10341.2242 46,505 .222368007 Root MSE = .07333
------------------------------------------------------------------------------
dwnom2new | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
dwnom2 | 1.009491 .0007369 1369.88 0.000 1.008046 1.010935
_cons | .008995 .0003401 26.45 0.000 .0083284 .0096616
------------------------------------------------------------------------------
. regress spread1new spread1 if (vardum==1)
Source | SS df MS Number of obs = 92,182
-------------+---------------------------------- F(1, 92180) > 99999.00
Model | 10512.7982 1 10512.7982 Prob > F = 0.0000
Residual | 56.4450622 92,180 .000612335 R-squared = 0.9947
-------------+---------------------------------- Adj R-squared = 0.9947
Total | 10569.2432 92,181 .114657502 Root MSE = .02475
------------------------------------------------------------------------------
spread1new | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
spread1 | 1.029077 .0002484 4143.47 0.000 1.02859 1.029564
_cons | -.0000282 .0000816 -0.35 0.730 -.000188 .0001317
------------------------------------------------------------------------------
. regress mid1new mid1 if (vardum==1)
Source | SS df MS Number of obs = 92,182
-------------+---------------------------------- F(1, 92180) > 99999.00
Model | 11859.8461 1 11859.8461 Prob > F = 0.0000
Residual | 140.163429 92,180 .001520541 R-squared = 0.9883
-------------+---------------------------------- Adj R-squared = 0.9883
Total | 12000.0095 92,181 .130178774 Root MSE = .03899
------------------------------------------------------------------------------
mid1new | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
mid1 | .9820736 .0003516 2792.80 0.000 .9813844 .9827629
_cons | .0000695 .0001284 0.54 0.589 -.0001823 .0003212
------------------------------------------------------------------------------
. regress spread2new spread2 if (vardum==1)
Source | SS df MS Number of obs = 92,182
-------------+---------------------------------- F(1, 92180) > 99999.00
Model | 23803.1281 1 23803.1281 Prob > F = 0.0000
Residual | 1170.16423 92,180 .01269434 R-squared = 0.9531
-------------+---------------------------------- Adj R-squared = 0.9531
Total | 24973.2924 92,181 .270915833 Root MSE = .11267
------------------------------------------------------------------------------
spread2new | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
spread2 | 1.060118 .0007742 1369.34 0.000 1.058601 1.061636
_cons | -.0007929 .0003711 -2.14 0.033 -.0015203 -.0000655
------------------------------------------------------------------------------
. regress mid2new mid2 if (vardum==1)
Source | SS df MS Number of obs = 92,182
-------------+---------------------------------- F(1, 92180) > 99999.00
Model | 29244.8144 1 29244.8144 Prob > F = 0.0000
Residual | 318.065259 92,180 .00345048 R-squared = 0.9892
-------------+---------------------------------- Adj R-squared = 0.9892
Total | 29562.8796 92,181 .320704696 Root MSE = .05874
------------------------------------------------------------------------------
mid2new | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
mid2 | .9959004 .0003421 2911.28 0.000 .99523 .9965709
_cons | -.0001018 .0001935 -0.53 0.599 -.0004811 .0002775
------------------------------------------------------------------------------