Current Versus Past DW-NOMINATE Scores
Updated 26 May 2015
House: 1 to 113 vs. 1 to 112 DW-NOMINATE Scalings Dimension 1 vs. Dimension 1 . regress dwnom1_113 dwnom1_112 Source | SS df MS Number of obs = 37077 -------------+------------------------------ F( 1, 37075) = . Model | 5169.02708 1 5169.02708 Prob > F = 0.0000 Residual | 11.6393954 37075 .000313942 R-squared = 0.9978 -------------+------------------------------ Adj R-squared = 0.9978 Total | 5180.66648 37076 .139730998 Root MSE = .01772 ------------------------------------------------------------------------------ dwnom1_113 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dwnom1_112 | .9829331 .0002422 4057.70 0.000 .9824583 .9834079 _cons | -.0013952 .0000921 -15.14 0.000 -.0015758 -.0012146 ------------------------------------------------------------------------------ Dimension 2 vs. Dimension 2 . regress dwnom2_113 dwnom2_112 Source | SS df MS Number of obs = 37077 -------------+------------------------------ F( 1, 37075) = . Model | 8587.38328 1 8587.38328 Prob > F = 0.0000 Residual | 76.9756672 37075 .002076215 R-squared = 0.9911 -------------+------------------------------ Adj R-squared = 0.9911 Total | 8664.35895 37076 .233691848 Root MSE = .04557 ------------------------------------------------------------------------------ dwnom2_113 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dwnom2_112 | .9835681 .0004836 2033.73 0.000 .9826202 .9845161 _cons | .010514 .0002372 44.33 0.000 .0100491 .0109788 ------------------------------------------------------------------------------ House: 1 to 113 vs. 1 to 111 DW-NOMINATE Scalings Dimension 1 vs. Dimension 1 . regress dwnom1_113 dwnom1_111 Source | SS df MS Number of obs = 36634 -------------+------------------------------ F( 1, 36632) = . Model | 4997.92072 1 4997.92072 Prob > F = 0.0000 Residual | 24.3035172 36632 .00066345 R-squared = 0.9952 -------------+------------------------------ Adj R-squared = 0.9952 Total | 5022.22424 36633 .137095631 Root MSE = .02576 ------------------------------------------------------------------------------ dwnom1_113 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dwnom1_111 | .9739628 .0003549 2744.67 0.000 .9732673 .9746583 _cons | -.0010557 .0001347 -7.84 0.000 -.0013198 -.0007917 ------------------------------------------------------------------------------ Dimension 2 vs. Dimension 2 . regress dwnom2_113 dwnom2_111 Source | SS df MS Number of obs = 36634 -------------+------------------------------ F( 1, 36632) = . Model | 8460.71188 1 8460.71188 Prob > F = 0.0000 Residual | 148.198988 36632 .004045616 R-squared = 0.9828 -------------+------------------------------ Adj R-squared = 0.9828 Total | 8608.91086 36633 .235004255 Root MSE = .06361 ------------------------------------------------------------------------------ dwnom2_113 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dwnom2_111 | .9708714 .0006714 1446.14 0.000 .9695556 .9721873 _cons | .0154127 .0003328 46.31 0.000 .0147603 .016065 ------------------------------------------------------------------------------ House: 1 to 113 vs. 1 to 110 DW-NOMINATE Scalings Dimension 1 vs. Dimension 1 . regress dwnom1_113 dwnom1_110 Source | SS df MS Number of obs = 36189 -------------+------------------------------ F( 1, 36187) = . Model | 4848.84281 1 4848.84281 Prob > F = 0.0000 Residual | 49.5044524 36187 .001368018 R-squared = 0.9899 -------------+------------------------------ Adj R-squared = 0.9899 Total | 4898.34726 36188 .135358331 Root MSE = .03699 ------------------------------------------------------------------------------ dwnom1_113 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dwnom1_110 | .9493184 .0005042 1882.67 0.000 .9483301 .9503067 _cons | -.0017018 .0001946 -8.74 0.000 -.0020833 -.0013204 ------------------------------------------------------------------------------ Dimension 2 vs. Dimension 2 . regress dwnom2_113 dwnom2_110 Source | SS df MS Number of obs = 36189 -------------+------------------------------ F( 1, 36187) = . Model | 8295.3667 1 8295.3667 Prob > F = 0.0000 Residual | 238.762484 36187 .006598018 R-squared = 0.9720 -------------+------------------------------ Adj R-squared = 0.9720 Total | 8534.12918 36188 .2358276 Root MSE = .08123 ------------------------------------------------------------------------------ dwnom2_113 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dwnom2_110 | .9550607 .0008518 1121.27 0.000 .9533912 .9567302 _cons | .0193568 .0004274 45.29 0.000 .0185191 .0201945 ------------------------------------------------------------------------------ House: 1 to 113 vs. 1 to 109 DW-NOMINATE Scalings Dimension 1 vs. Dimension 1 . regress dwnom1_113 dwnom1_109 Source | SS df MS Number of obs = 35742 -------------+------------------------------ F( 1, 35740) = . Model | 4707.70549 1 4707.70549 Prob > F = 0.0000 Residual | 67.0482072 35740 .001875999 R-squared = 0.9860 -------------+------------------------------ Adj R-squared = 0.9860 Total | 4774.7537 35741 .133593176 Root MSE = .04331 ------------------------------------------------------------------------------ dwnom1_113 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dwnom1_109 | .9323423 .0005886 1584.12 0.000 .9311887 .9334959 _cons | -.00476 .0002294 -20.75 0.000 -.0052096 -.0043104 ------------------------------------------------------------------------------ Dimension 2 vs. Dimension 2 . regress dwnom2_113 dwnom2_109 Source | SS df MS Number of obs = 35742 -------------+------------------------------ F( 1, 35740) = . Model | 8219.84534 1 8219.84534 Prob > F = 0.0000 Residual | 246.509137 35740 .00689729 R-squared = 0.9709 -------------+------------------------------ Adj R-squared = 0.9709 Total | 8466.35447 35741 .236880738 Root MSE = .08305 ------------------------------------------------------------------------------ dwnom2_113 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dwnom2_109 | .9400387 .0008611 1091.67 0.000 .9383509 .9417265 _cons | .0209769 .0004396 47.72 0.000 .0201152 .0218385 ------------------------------------------------------------------------------ House: 1 to 113 vs. 1 to 108 DW-NOMINATE Scalings Dimension 1 vs. Dimension 1 . regress dwnom1_113 dwnom1_108 Source | SS df MS Number of obs = 35303 -------------+------------------------------ F( 1, 35301) = . Model | 4570.51797 1 4570.51797 Prob > F = 0.0000 Residual | 81.5430401 35301 .002309936 R-squared = 0.9825 -------------+------------------------------ Adj R-squared = 0.9825 Total | 4652.06101 35302 .131778965 Root MSE = .04806 ------------------------------------------------------------------------------ dwnom1_113 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dwnom1_108 | .9150235 .0006505 1406.64 0.000 .9137485 .9162986 _cons | -.0058533 .0002561 -22.86 0.000 -.0063552 -.0053513 ------------------------------------------------------------------------------ Dimension 2 vs. Dimension 2 . regress dwnom2_113 dwnom2_108 Source | SS df MS Number of obs = 35303 -------------+------------------------------ F( 1, 35301) = . Model | 8145.94141 1 8145.94141 Prob > F = 0.0000 Residual | 259.550663 35301 .007352502 R-squared = 0.9691 -------------+------------------------------ Adj R-squared = 0.9691 Total | 8405.49208 35302 .238102433 Root MSE = .08575 ------------------------------------------------------------------------------ dwnom2_113 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dwnom2_108 | .9232368 .0008771 1052.58 0.000 .9215176 .924956 _cons | .0219556 .0004566 48.08 0.000 .0210606 .0228506 ------------------------------------------------------------------------------ House: 1 to 113 vs. 1 to 107 DW-NOMINATE Scalings Dimension 1 vs. Dimension 1 . regress dwnom1_113 dwnom1_107 Source | SS df MS Number of obs = 34862 -------------+------------------------------ F( 1, 34860) = . Model | 4434.57372 1 4434.57372 Prob > F = 0.0000 Residual | 102.82705 34860 .002949715 R-squared = 0.9773 -------------+------------------------------ Adj R-squared = 0.9773 Total | 4537.40077 34861 .130156931 Root MSE = .05431 ------------------------------------------------------------------------------ dwnom1_113 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dwnom1_107 | .8823515 .0007196 1226.13 0.000 .880941 .883762 _cons | -.0056134 .0002911 -19.28 0.000 -.0061841 -.0050428 ------------------------------------------------------------------------------ Dimension 2 vs. Dimension 2 . regress dwnom2_113 dwnom2_107 Source | SS df MS Number of obs = 34862 -------------+------------------------------ F( 1, 34860) = . Model | 8000.30839 1 8000.30839 Prob > F = 0.0000 Residual | 346.587451 34860 .009942268 R-squared = 0.9585 -------------+------------------------------ Adj R-squared = 0.9585 Total | 8346.89584 34861 .239433632 Root MSE = .09971 ------------------------------------------------------------------------------ dwnom2_113 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dwnom2_107 | .9148592 .0010199 897.04 0.000 .9128602 .9168581 _cons | .0221275 .0005343 41.41 0.000 .0210803 .0231748 ------------------------------------------------------------------------------ House: 1 to 113 vs. 1 to 106 DW-NOMINATE Scalings Dimension 1 vs. Dimension 1 . regress dwnom1_113 dwnom1_106 Source | SS df MS Number of obs = 34420 -------------+------------------------------ F( 1, 34418) = . Model | 4290.80523 1 4290.80523 Prob > F = 0.0000 Residual | 139.531743 34418 .004054034 R-squared = 0.9685 -------------+------------------------------ Adj R-squared = 0.9685 Total | 4430.33697 34419 .128717771 Root MSE = .06367 ------------------------------------------------------------------------------ dwnom1_113 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dwnom1_106 | .8620367 .0008379 1028.79 0.000 .8603943 .863679 _cons | -.0054574 .0003434 -15.89 0.000 -.0061306 -.0047842 ------------------------------------------------------------------------------ Dimension 2 vs. Dimension 2 . regress dwnom2_113 dwnom2_106 Source | SS df MS Number of obs = 34420 -------------+------------------------------ F( 1, 34418) = . Model | 7822.98089 1 7822.98089 Prob > F = 0.0000 Residual | 463.692674 34418 .013472389 R-squared = 0.9440 -------------+------------------------------ Adj R-squared = 0.9440 Total | 8286.67357 34419 .240758696 Root MSE = .11607 ------------------------------------------------------------------------------ dwnom2_113 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dwnom2_106 | .8718644 .0011442 762.02 0.000 .8696218 .874107 _cons | .0258426 .0006258 41.30 0.000 .024616 .0270692 ------------------------------------------------------------------------------ House: 1 to 113 vs. 1 to 105 DW-NOMINATE Scalings Dimension 1 vs. Dimension 1 . regress dwnom1_113 dwnom1_105 Source | SS df MS Number of obs = 33980 -------------+------------------------------ F( 1, 33978) = . Model | 4023.09364 1 4023.09364 Prob > F = 0.0000 Residual | 308.780491 33978 .009087659 R-squared = 0.9287 -------------+------------------------------ Adj R-squared = 0.9287 Total | 4331.87413 33979 .127486805 Root MSE = .09533 ------------------------------------------------------------------------------ dwnom1_113 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dwnom1_105 | .9328432 .001402 665.36 0.000 .9300952 .9355912 _cons | -.0070752 .0005176 -13.67 0.000 -.0080897 -.0060607 ------------------------------------------------------------------------------ Dimension 2 vs. Dimension 2 . regress dwnom2_113 dwnom2_105 Source | SS df MS Number of obs = 33980 -------------+------------------------------ F( 1, 33978) = . Model | 7110.84621 1 7110.84621 Prob > F = 0.0000 Residual | 1114.43871 33978 .032798832 R-squared = 0.8645 -------------+------------------------------ Adj R-squared = 0.8645 Total | 8225.28492 33979 .242069658 Root MSE = .1811 ------------------------------------------------------------------------------ dwnom2_113 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dwnom2_105 | .8727179 .0018743 465.62 0.000 .8690442 .8763917 _cons | .0296881 .0009826 30.22 0.000 .0277622 .0316139 ------------------------------------------------------------------------------ Senate: 1 to 113 vs. 1 to 112 DW-NOMINATE Scalings Dimension 1 vs. Dimension 1 . regress dwnom1_113 dwnom1_112 Source | SS df MS Number of obs = 8958 -------------+------------------------------ F( 1, 8956) = . Model | 1278.05146 1 1278.05146 Prob > F = 0.0000 Residual | 7.64674359 8956 .000853812 R-squared = 0.9941 -------------+------------------------------ Adj R-squared = 0.9941 Total | 1285.6982 8957 .143541163 Root MSE = .02922 ------------------------------------------------------------------------------ dwnom1_113 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dwnom1_112 | .9867752 .0008065 1223.47 0.000 .9851942 .9883562 _cons | -.0035728 .0003091 -11.56 0.000 -.0041788 -.0029669 ------------------------------------------------------------------------------ Dimension 2 vs. Dimension 2 . regress dwnom2_113 dwnom2_112 Source | SS df MS Number of obs = 8958 -------------+------------------------------ F( 1, 8956) = . Model | 2268.33905 1 2268.33905 Prob > F = 0.0000 Residual | 22.6633966 8956 .002530527 R-squared = 0.9901 -------------+------------------------------ Adj R-squared = 0.9901 Total | 2291.00245 8957 .255777878 Root MSE = .0503 ------------------------------------------------------------------------------ dwnom2_113 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dwnom2_112 | .9752736 .0010301 946.78 0.000 .9732544 .9772928 _cons | -.0132106 .0005323 -24.82 0.000 -.014254 -.0121672 ------------------------------------------------------------------------------ Senate: 1 to 113 vs. 1 to 111 DW-NOMINATE Scalings Dimension 1 vs. Dimension 1 . regress dwnom1_113 dwnom1_111 Source | SS df MS Number of obs = 8856 -------------+------------------------------ F( 1, 8854) = . Model | 1239.75754 1 1239.75754 Prob > F = 0.0000 Residual | 22.9381596 8854 .002590711 R-squared = 0.9818 -------------+------------------------------ Adj R-squared = 0.9818 Total | 1262.6957 8855 .142596917 Root MSE = .0509 ------------------------------------------------------------------------------ dwnom1_113 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dwnom1_111 | .9663282 .0013969 691.77 0.000 .9635899 .9690665 _cons | -.009075 .0005413 -16.77 0.000 -.010136 -.008014 ------------------------------------------------------------------------------ Dimension 2 vs. Dimension 2 . regress dwnom2_113 dwnom2_111 Source | SS df MS Number of obs = 8856 -------------+------------------------------ F( 1, 8854) = . Model | 2226.11889 1 2226.11889 Prob > F = 0.0000 Residual | 50.4710363 8854 .005700366 R-squared = 0.9778 -------------+------------------------------ Adj R-squared = 0.9778 Total | 2276.58993 8855 .257096547 Root MSE = .0755 ------------------------------------------------------------------------------ dwnom2_113 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dwnom2_111 | .9565577 .0015307 624.92 0.000 .9535572 .9595583 _cons | -.018028 .0008031 -22.45 0.000 -.0196024 -.0164537 ------------------------------------------------------------------------------ Senate: 1 to 113 vs. 1 to 110 DW-NOMINATE Scalings Dimension 1 vs. Dimension 1 . regress dwnom1_113 dwnom1_110 Source | SS df MS Number of obs = 8748 -------------+------------------------------ F( 1, 8746) = . Model | 1193.81294 1 1193.81294 Prob > F = 0.0000 Residual | 48.2041367 8746 .005511564 R-squared = 0.9612 -------------+------------------------------ Adj R-squared = 0.9612 Total | 1242.01708 8747 .141993493 Root MSE = .07424 ------------------------------------------------------------------------------ dwnom1_113 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dwnom1_110 | .9345538 .002008 465.40 0.000 .9306176 .9384901 _cons | -.0137322 .000794 -17.29 0.000 -.0152887 -.0121758 ------------------------------------------------------------------------------ Dimension 2 vs. Dimension 2 . regress dwnom2_113 dwnom2_110 Source | SS df MS Number of obs = 8748 -------------+------------------------------ F( 1, 8746) = . Model | 2145.73455 1 2145.73455 Prob > F = 0.0000 Residual | 113.562971 8746 .012984561 R-squared = 0.9497 -------------+------------------------------ Adj R-squared = 0.9497 Total | 2259.29752 8747 .258293989 Root MSE = .11395 ------------------------------------------------------------------------------ dwnom2_113 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dwnom2_110 | .9354904 .0023013 406.51 0.000 .9309794 .9400014 _cons | -.0191431 .0012196 -15.70 0.000 -.0215337 -.0167525 ------------------------------------------------------------------------------ Senate: 1 to 113 vs. 1 to 109 DW-NOMINATE Scalings Dimension 1 vs. Dimension 1 . regress dwnom1_113 dwnom1_109 Source | SS df MS Number of obs = 8645 -------------+------------------------------ F( 1, 8643) = . Model | 1160.77771 1 1160.77771 Prob > F = 0.0000 Residual | 61.4627811 8643 .007111279 R-squared = 0.9497 -------------+------------------------------ Adj R-squared = 0.9497 Total | 1222.24049 8644 .141397558 Root MSE = .08433 ------------------------------------------------------------------------------ dwnom1_113 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dwnom1_109 | .9174496 .0022708 404.02 0.000 .9129983 .9219009 _cons | -.0178532 .0009071 -19.68 0.000 -.0196313 -.016075 ------------------------------------------------------------------------------ Dimension 2 vs. Dimension 2 . regress dwnom2_113 dwnom2_109 Source | SS df MS Number of obs = 8645 -------------+------------------------------ F( 1, 8643) = . Model | 2099.61757 1 2099.61757 Prob > F = 0.0000 Residual | 141.707519 8643 .01639564 R-squared = 0.9368 -------------+------------------------------ Adj R-squared = 0.9368 Total | 2241.32509 8644 .259292583 Root MSE = .12805 ------------------------------------------------------------------------------ dwnom2_113 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dwnom2_109 | .9048346 .0025285 357.85 0.000 .8998782 .9097911 _cons | -.0206364 .0013784 -14.97 0.000 -.0233383 -.0179344 ------------------------------------------------------------------------------ Senate: 1 to 113 vs. 1 to 108 DW-NOMINATE Scalings Dimension 1 vs. Dimension 1 . regress dwnom1_113 dwnom1_108 Source | SS df MS Number of obs = 8543 -------------+------------------------------ F( 1, 8541) = . Model | 1117.79341 1 1117.79341 Prob > F = 0.0000 Residual | 85.592758 8541 .010021398 R-squared = 0.9289 -------------+------------------------------ Adj R-squared = 0.9289 Total | 1203.38617 8542 .140878737 Root MSE = .10011 ------------------------------------------------------------------------------ dwnom1_113 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dwnom1_108 | .8955857 .0026816 333.98 0.000 .8903292 .9008423 _cons | -.0203238 .0010832 -18.76 0.000 -.0224471 -.0182005 ------------------------------------------------------------------------------ Dimension 2 vs. Dimension 2 . regress dwnom2_113 dwnom2_108 Source | SS df MS Number of obs = 8543 -------------+------------------------------ F( 1, 8541) =93089.23 Model | 2036.99078 1 2036.99078 Prob > F = 0.0000 Residual | 186.895291 8541 .021882132 R-squared = 0.9160 -------------+------------------------------ Adj R-squared = 0.9160 Total | 2223.88607 8542 .260347234 Root MSE = .14793 ------------------------------------------------------------------------------ dwnom2_113 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dwnom2_108 | .8685119 .0028466 305.11 0.000 .8629319 .8740919 _cons | -.0201398 .0016019 -12.57 0.000 -.0232799 -.0169998 ------------------------------------------------------------------------------ Senate: 1 to 113 vs. 1 to 107 DW-NOMINATE Scalings Dimension 1 vs. Dimension 1 . regress dwnom1_113 dwnom1_107 Source | SS df MS Number of obs = 8442 -------------+------------------------------ F( 1, 8440) =86200.70 Model | 1081.72364 1 1081.72364 Prob > F = 0.0000 Residual | 105.912685 8440 .012548896 R-squared = 0.9108 -------------+------------------------------ Adj R-squared = 0.9108 Total | 1187.63632 8441 .140698534 Root MSE = .11202 ------------------------------------------------------------------------------ dwnom1_113 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dwnom1_107 | .8741563 .0029774 293.60 0.000 .8683199 .8799927 _cons | -.0223433 .0012193 -18.32 0.000 -.0247334 -.0199532 ------------------------------------------------------------------------------ Dimension 2 vs. Dimension 2 . regress dwnom2_113 dwnom2_107 Source | SS df MS Number of obs = 8442 -------------+------------------------------ F( 1, 8440) =72633.23 Model | 1974.45293 1 1974.45293 Prob > F = 0.0000 Residual | 229.431953 8440 .027183881 R-squared = 0.8959 -------------+------------------------------ Adj R-squared = 0.8959 Total | 2203.88488 8441 .261092866 Root MSE = .16488 ------------------------------------------------------------------------------ dwnom2_113 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dwnom2_107 | .839255 .0031141 269.51 0.000 .8331507 .8453593 _cons | -.017781 .0017964 -9.90 0.000 -.0213024 -.0142597 ------------------------------------------------------------------------------ Senate: 1 to 113 vs. 1 to 106 DW-NOMINATE Scalings Dimension 1 vs. Dimension 1 . regress dwnom1_113 dwnom1_106 Source | SS df MS Number of obs = 8340 -------------+------------------------------ F( 1, 8338) =77219.80 Model | 1056.92026 1 1056.92026 Prob > F = 0.0000 Residual | 114.1236 8338 .013687167 R-squared = 0.9025 -------------+------------------------------ Adj R-squared = 0.9025 Total | 1171.04386 8339 .140429771 Root MSE = .11699 ------------------------------------------------------------------------------ dwnom1_113 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dwnom1_106 | .8752275 .0031496 277.88 0.000 .8690535 .8814016 _cons | -.0211169 .0012812 -16.48 0.000 -.0236284 -.0186053 ------------------------------------------------------------------------------ Dimension 2 vs. Dimension 2 . regress dwnom2_113 dwnom2_106 Source | SS df MS Number of obs = 8340 -------------+------------------------------ F( 1, 8338) =65224.43 Model | 1936.04076 1 1936.04076 Prob > F = 0.0000 Residual | 247.494797 8338 .029682753 R-squared = 0.8867 -------------+------------------------------ Adj R-squared = 0.8866 Total | 2183.53556 8339 .261846212 Root MSE = .17229 ------------------------------------------------------------------------------ dwnom2_113 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dwnom2_106 | .7976935 .0031234 255.39 0.000 .7915708 .8038162 _cons | -.0156205 .0018889 -8.27 0.000 -.0193232 -.0119178 ------------------------------------------------------------------------------ Senate: 1 to 113 vs. 1 to 105 DW-NOMINATE Scalings Dimension 1 vs. Dimension 1 . regress dwnom1_113 dwnom1_105 Source | SS df MS Number of obs = 8237 -------------+------------------------------ F( 1, 8235) =48476.17 Model | 986.919987 1 986.919987 Prob > F = 0.0000 Residual | 167.65529 8235 .02035887 R-squared = 0.8548 -------------+------------------------------ Adj R-squared = 0.8548 Total | 1154.57528 8236 .140186411 Root MSE = .14268 ------------------------------------------------------------------------------ dwnom1_113 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dwnom1_105 | .8799939 .0039968 220.17 0.000 .8721591 .8878287 _cons | -.0254872 .0015722 -16.21 0.000 -.028569 -.0224053 ------------------------------------------------------------------------------ Dimension 2 vs. Dimension 2 . regress dwnom2_113 dwnom2_105 Source | SS df MS Number of obs = 8237 -------------+------------------------------ F( 1, 8235) =38087.20 Model | 1779.07855 1 1779.07855 Prob > F = 0.0000 Residual | 384.662303 8235 .046710662 R-squared = 0.8222 -------------+------------------------------ Adj R-squared = 0.8222 Total | 2163.74085 8236 .262717442 Root MSE = .21613 ------------------------------------------------------------------------------ dwnom2_113 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dwnom2_105 | .799388 .0040961 195.16 0.000 .7913586 .8074173 _cons | -.0192329 .0023835 -8.07 0.000 -.0239051 -.0145607 ------------------------------------------------------------------------------House Correlation Matrix All DW-NOMINATE Scalings
. pwcorr dwnom1_113 dwnom2_113 dwnom1_112 dwnom2_112 dwnom1_111 dwnom2_111 dwnom1_110 dwnom2_110 dwnom1_109 dwnom2_109 dwnom1_108 dwnom2_108 dwnom1_107 dwnom2_107 dwnom1_106 dwnom2_106 dwnom1_105 dwnom2_105, sig -------------+------------------------------------------------------------------------------------------------------------ | dwnom1~3 dwnom2~3 dwnom1~2 dwnom2~2 dwnom1~1 dwnom2~1 dwnom1~0 dwnom2~0 dwnom1~9 dwnom2~9 dwnom1~8 dwnom2~8 dwnom1~7 dwnom2~7 dwnom1~6 dwnom2~6 dwnom1~5 dwnom2~5 -------------+------------------------------------------------------------------------------------------------------------ dwnom1_113 | 1.0000 | dwnom2_113 | -0.0313 1.0000 | 0.0000 | dwnom1_112 | 0.9989 -0.0351 1.0000 | 0.0000 0.0000 | dwnom2_112 | -0.0634 0.9955 -0.0640 1.0000 | 0.0000 0.0000 0.0000 | dwnom1_111 | 0.9976 -0.0401 0.9994 -0.0677 1.0000 | 0.0000 0.0000 0.0000 0.0000 | dwnom2_111 | -0.0779 0.9914 -0.0780 0.9981 -0.0784 1.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 | dwnom1_110 | 0.9949 -0.0448 0.9975 -0.0700 0.9987 -0.0789 1.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | dwnom2_110 | -0.0837 0.9859 -0.0836 0.9942 -0.0836 0.9966 -0.0831 1.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | dwnom1_109 | 0.9930 -0.0529 0.9958 -0.0759 0.9975 -0.0836 0.9992 -0.0867 1.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | dwnom2_109 | -0.0842 0.9853 -0.0838 0.9930 -0.0838 0.9951 -0.0836 0.9983 -0.0865 1.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | dwnom1_108 | 0.9912 -0.0600 0.9943 -0.0807 0.9961 -0.0874 0.9983 -0.0893 0.9995 -0.0886 1.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | dwnom2_108 | -0.0797 0.9844 -0.0798 0.9919 -0.0800 0.9942 -0.0801 0.9976 -0.0830 0.9984 -0.0850 1.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | dwnom1_107 | 0.9886 -0.0723 0.9917 -0.0912 0.9935 -0.0972 0.9959 -0.0984 0.9970 -0.0973 0.9973 -0.0948 1.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | dwnom2_107 | -0.0614 0.9790 -0.0615 0.9855 -0.0619 0.9878 -0.0621 0.9924 -0.0652 0.9937 -0.0673 0.9942 -0.0754 1.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | dwnom1_106 | 0.9841 -0.0813 0.9874 -0.0984 0.9890 -0.1039 0.9916 -0.1045 0.9926 -0.1034 0.9928 -0.1014 0.9983 -0.0810 1.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | dwnom2_106 | -0.0421 0.9716 -0.0423 0.9770 -0.0429 0.9792 -0.0433 0.9843 -0.0464 0.9864 -0.0485 0.9876 -0.0563 0.9962 -0.0615 1.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | dwnom1_105 | 0.9637 -0.0838 0.9675 -0.0989 0.9693 -0.1036 0.9727 -0.1037 0.9744 -0.1024 0.9753 -0.1005 0.9843 -0.0798 0.9895 -0.0602 1.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | dwnom2_105 | 0.0007 0.9298 0.0009 0.9351 0.0005 0.9377 0.0006 0.9449 -0.0022 0.9474 -0.0041 0.9494 -0.0097 0.9649 -0.0127 0.9734 -0.0097 1.0000 | 0.8921 0.0000 0.8694 0.0000 0.9219 0.0000 0.9063 0.0000 0.6814 0.0000 0.4545 0.0000 0.0736 0.0000 0.0190 0.0000 0.0736 |Senate Correlation Matrix All DW-NOMINATE Scalings
. pwcorr dwnom1_113 dwnom2_113 dwnom1_112 dwnom2_112 dwnom1_111 dwnom2_111 dwnom1_110 dwnom2_110 dwnom1_109 dwnom2_109 dwnom1_108 dwnom2_108 dwnom1_107 dwnom2_107 dwnom1_106 dwnom2_106 dwnom1_105 dwnom2_105, sig -------------+------------------------------------------------------------------------------------------------------------ | | dwnom1~3 dwnom2~3 dwnom1~2 dwnom2~2 dwnom1~1 dwnom2~1 dwnom1~0 dwnom2~0 dwnom1~9 dwnom2~9 dwnom1~8 dwnom2~8 dwnom1~7 dwnom2~7 dwnom1~6 dwnom2~6 dwnom1~5 dwnom2~5 -------------+------------------------------------------------------------------------------------------------------------ dwnom1_113 | 1.0000 | | dwnom2_113 | -0.0215 1.0000 | 0.0404 | dwnom1_112 | 0.9970 -0.0186 1.0000 | 0.0000 0.0784 | dwnom2_112 | -0.0237 0.9950 -0.0234 1.0000 | 0.0249 0.0000 0.0268 | dwnom1_111 | 0.9909 -0.0188 0.9973 -0.0258 1.0000 | 0.0000 0.0765 0.0000 0.0154 | dwnom2_111 | -0.0292 0.9889 -0.0294 0.9972 -0.0340 1.0000 | 0.0060 0.0000 0.0056 0.0000 0.0014 | dwnom1_110 | 0.9804 -0.0089 0.9898 -0.0168 0.9962 -0.0263 1.0000 | 0.0000 0.4066 0.0000 0.1154 0.0000 0.0141 | dwnom2_110 | -0.0369 0.9745 -0.0376 0.9865 -0.0422 0.9931 -0.0372 1.0000 | 0.0006 0.0000 0.0004 0.0000 0.0001 0.0000 0.0005 | dwnom1_109 | 0.9745 -0.0060 0.9856 -0.0147 0.9938 -0.0251 0.9991 -0.0365 1.0000 | 0.0000 0.5792 0.0000 0.1717 0.0000 0.0196 0.0000 0.0007 | dwnom2_109 | -0.0403 0.9679 -0.0412 0.9817 -0.0462 0.9898 -0.0414 0.9986 -0.0423 1.0000 | 0.0002 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 | dwnom1_108 | 0.9638 -0.0031 0.9774 -0.0127 0.9878 -0.0238 0.9956 -0.0353 0.9981 -0.0413 1.0000 | 0.0000 0.7770 0.0000 0.2396 0.0000 0.0280 0.0000 0.0011 0.0000 0.0001 | dwnom2_108 | -0.0435 0.9571 -0.0444 0.9728 -0.0495 0.9825 -0.0450 0.9942 -0.0461 0.9975 -0.0460 1.0000 | 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | dwnom1_107 | 0.9544 0.0083 0.9693 -0.0033 0.9816 -0.0155 0.9914 -0.0279 0.9944 -0.0348 0.9966 -0.0407 1.0000 | 0.0000 0.4474 0.0000 0.7619 0.0000 0.1534 0.0000 0.0102 0.0000 0.0014 0.0000 0.0002 | dwnom2_107 | -0.0409 0.9465 -0.0397 0.9622 -0.0432 0.9725 -0.0376 0.9871 -0.0378 0.9910 -0.0363 0.9943 -0.0320 1.0000 | 0.0002 0.0000 0.0003 0.0000 0.0001 0.0000 0.0006 0.0000 0.0005 0.0000 0.0009 0.0000 0.0033 | dwnom1_106 | 0.9500 0.0221 0.9648 0.0093 0.9770 -0.0038 0.9866 -0.0170 0.9891 -0.0245 0.9899 -0.0317 0.9971 -0.0229 1.0000 | 0.0000 0.0432 0.0000 0.3946 0.0000 0.7299 0.0000 0.1214 0.0000 0.0252 0.0000 0.0038 0.0000 0.0366 | dwnom2_106 | -0.0432 0.9416 -0.0406 0.9566 -0.0430 0.9667 -0.0369 0.9806 -0.0364 0.9845 -0.0344 0.9879 -0.0301 0.9962 -0.0231 1.0000 | 0.0001 0.0000 0.0002 0.0000 0.0001 0.0000 0.0008 0.0000 0.0009 0.0000 0.0017 0.0000 0.0060 0.0000 0.0349 | dwnom1_105 | 0.9245 0.0155 0.9403 0.0008 0.9542 -0.0135 0.9654 -0.0266 0.9686 -0.0347 0.9705 -0.0428 0.9836 -0.0331 0.9898 -0.0336 1.0000 | 0.0000 0.1599 0.0000 0.9385 0.0000 0.2220 0.0000 0.0159 0.0000 0.0017 0.0000 0.0001 0.0000 0.0026 0.0000 0.0023 | dwnom2_105 | -0.0264 0.9068 -0.0220 0.9229 -0.0226 0.9335 -0.0158 0.9499 -0.0144 0.9534 -0.0112 0.9563 -0.0058 0.9725 0.0016 0.9764 -0.0085 1.0000 | 0.0164 0.0000 0.0458 0.0000 0.0403 0.0000 0.1528 0.0000 0.1913 0.0000 0.3116 0.0000 0.5993 0.0000 0.8830 0.0000 0.4388